
CPS 130 Homework 8 - Solutions

1. (CLRS 9.3-3) Show how Quicksort can be made to run in O(n log n) time in the worst
case.

Solution: Modify the Partition procedure of Quicksort to use the Select algorithm
to choose the median of the input array as the pivot element. The worst-case running
time of Select is linear, so we do not increase the time requirement of Partition, and
selecting the median as pivot guarantees the input is split into two equal parts, so that
we always have the best-case partitioning. The running time of the entire computation is
then given by the recurrence T (n) = 2 T (n/2) + O(n) = O(n lg n).

2. (CLRS 9.3-5) Suppose that you have a “black-box” worst-case linear-time median sub-
routine. Give a simple, linear-time algorithm that solves the selection problem for an
arbitrary order statistic.

Solution: Let A[1 . . . n] denote the given array and denote the order statistic by k. The
black-box subroutine on A returns the (n/2) element. If k = n/2 then we are done. Else,
we scan through A and divide into two groups A1, A2 those elements less than A[n/2] and
those greater than A[n/2], respectively. If k < n/2, we find the order statistic for the kth

element in A1. If k > n/2, we find the order statistic for the (n/2 − k)th element in A2.
An example algorithm is as follows:

SELECTION(A, k)

BLACK-BOX(A)

IF k = n/2 return A[n/2]

DIVIDE(A) /* returns A1, A2 */

IF k < n/2 SELECTION(A1, k)

ELSE SELECTION(A2, n/2 − k)

END SELECTION

The cost of computing the median using the black-box subroutine is O(n), and the cost
of dividing the array is O(n). Let T (n) be the cost of computing the k− th order statistic
using the algorithm described above. Then

T (n) ≤ cn + T (n/2)

= c(n + n/2 + n/4 + n/8 + . . . + T (1))

≤ 2cn

= O(n)



3. Let A be a list of n (not necessarily distinct) integers. Describe an O(n)-algorithm to test
whether any item occurs more than dn/2e times in A.

Solution: If an element occurs more than dn/2e times in a A then it must be the median
of A. However, the reverse is not true, so once the median is found, you must check to see
how many times it occurs in A. The algorithm takes O(n) time provided you use linear
selection and O(n) space.

Test(A, n)

1 Use linear selection to find the median m of A.

2 Do one more pass through A and count the number of

occurences of m.

- if m occurs more than dn/2e times then return

YES;

- otherwise return NO.

4. (CLRS 9.3-7) Describe an O(n) algorithm that, given a set S of n distinct numbers and
a positive integer k ≤ n, determines the k numbers in S that are closest to the median of
S.

Solution: Assume for simplicity that n is odd and k is even. If the set S was in sorted
order, the median is in position n/2 and the k numbers in S that closest to the median
are in positions (n − k)/2 through (n + k)/2. We first use linear time selection to find
the (n − k)/2, n/2, and (n + k)/2 elements and then pass through the set S to find the
numbers less than (n+k)/2 element, greater than the (n−k)/2 element, and not equal to
the n/2 element. The algorithm takes O(n) time as we use linear time selection exactly
three times and traverse the n numbers in S once.

2


