CPS 130 Homework 7 - Solutions

1. (CLRS 8.3-1) Illustrate the operation of Radix-Sort on the following list of English words: COW, DOG, SEA, RUG, ROW, MOB, BOX, TAB, BAR, EAR, TAR, DIG, BIG, TEA, NOW, FOX.

Solution:

COW	SEA	TAB	BAR
DOG	TEA	BAR	BIG
SEA	MOB	EAR	BOX
RUG	TAB	TAR	COW
ROW	DOG	SEA	DIG
MOB	RUG	TEA	DOG
BOX	DIG		DIG
TAB \Rightarrow	BIG \Rightarrow	BIG \Rightarrow	FOX
BAR	BAR		MOB
EAR	EAR	DOG	NOB
TAR	TAR	COW	ROW
DIG	COW	ROW	RUG
BIG	ROW	NOW	SEA
TEA	NOW	BOX	TAB
NOW	BOX	FOX	TAR
FOX	FOX	RUG	TEA

2. (CLRS 8.3-2) Which of the following sorting algorithms are stable: Insertion-Sort, Merge-Sort, Quicksort? Give a simple scheme that makes any sorting algorithm stable. How much additional time and space does your scheme entail?

Solution: Insertion-Sort is stable (page 3 CLRS), Merge-Sort is stable (page 12 CLRS), and Quicksort (page 154 CLRS) is not stable.

There are many solutions to the second part. One idea is to add to each key the position in the initial array and to sort using the additional secondary key. This requires $O(n)$ additional space and has the same time requirement.
3. (CLRS 8.3-4) Show how to sort n integers in the range 1 to n^{2} in $O(n)$ time.

Solution: Use Radix-Sort in base n. Since the numbers are in base n, the range of digits is 1 to n so $k=n$. The number of passes needed is 3 since $n^{2}=100_{n}$ so $d=3$. The running time of RADIX-Sort is $\Theta(d n+d k)=\Theta(3 n+3 n)=\Theta(n) \in O(n)$.
4. (CLRS 8.4-1) Illustrate the operation of Bucket-Sort on the array

$$
A=[.79, .13, .16, .64, .39, .20, .89, .53, .71, .42]
$$

Solution:

| 0 | $/$ | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | \rightarrow | .13 | \rightarrow | .16 | $/$ |
| 2 | \rightarrow | .20 | $/$ | | |
| 3 | \rightarrow | .39 | $/$ | | |
| 4 | \rightarrow | .42 | $/$ | | |
| 5 | \rightarrow | .53 | $/$ | | |
| 6 | \rightarrow | .64 | $/$ | | |
| 7 | \rightarrow | .71 | \rightarrow | .79 | $/$ |
| 8 | \rightarrow | .89 | $/$ | | |
| 9 | $/$ | | | | |

