
CPS 130 Homework 6 - Solutions

1. (CLRS 7.4-5) The running time of Quicksort can be improved in practice by taking
advantage of the fast running time of Insertion-Sort when its input is \nearly" sorted.
When Quicksort is called on a subarray with fewer than k elements, let it simply
return without sorting the subarray. After the top-level call to Quicksort returns,
run Insertion-Sort on the entire array to �nish the sorting process. Argue that this
sorting algorithm runs in O(nk+n lg(n=k)) expected time. How should k be picked, both
in theory and in practice?

Answer: A complete proof would be similar with the proof of the average case running
time of Quicksort (CLR section 7.4.2).

The main idea is to note that the recursion stops when n

2i
= k, that is i = log2

n

k
. The

recursion takes in total O(n � lg n

k
). The resulting array is composed of k subarrays of size

n=k, where the elements in each subarray are all less than all the subarrays following it.
Running Insertion-Sort on the entire array is thus equivalent to sorting each of the n

k

subarrays of size k, which takes on the average n

k
�O(k2) = O(nk) (the expected running

time of Insertion-Sort is O(n2)).

If k is chosen too big, then the O(nk) cost of insertion becomes bigger than �(n lgn).
Therefore k must be O(lgn). Furthermore it must be that O(nk+ n lg n

k
) = O(n lgn). If

the constant factors in the big-oh notation are ignored, than it follows that k should be
such that k < lg k which is impossible (unless k = 1) - the error comes from ignoring the
constant factors. Let c1 be the constant factor in quicksort, and c2 be the constant factor
in insertion sort. Than k must be chosen such that c2k + c1 lg

n

k
< c1 lgn which requires

c1k < c2 lg k. In practice these constants cannot be ignored (also there can be lower order
terms in O(n lgn)) and k should be chosen experimentally.

2. (CLRS 7-3) Professors Dewey, Cheatham, and Howe have proposed the following \elegant"
sorting algorithm:

Stooge-Sort(A; i; j)
if A[i] > A[j]

then exchange A[i]$ A[j]
if i + 1 � j

then return
k  b(j � i+ 1)=3c
Stooge-Sort(A; i; j � k)
Stooge-Sort(A; i+ k; j)
Stooge-Sort(A; i; j � k)

a. Argue that Stooge-Sort(A; 1; length[A]) correctly sorts the input array A[1::n],
where n = length[A].

Solution: By induction:



For the base case let n = 2. The �rst two lines of the algorithm will check if
the two elements are sorted; if not, it exchanges them (and now they are sorted).
The algorithm returns after the following if statement. Thus Stooge-Sort sorts
correctly for n = 2.

Assume Stooge-Sort correctly sorts an input array A[1::k], where k = length[A]
and 1 � k < n. In particular, Stooge-Sort correctly sorts an input array of size
k = 2n=3 (you may also assume Stooge-Sort sorts correctly for 1 < k = 2n=3).
Let A[1::n] be an input array of size n = length[A]. By the induction hypothesis
the �rst call to Stooge-Sort(A; i; j � k) correctly sorts the �rst 2n=3 elements,
so that the elements 1 : : : n=3 are less than elements (n + 1)=3 : : : 2n=3. The call
to Stooge-Sort(A; i; j � k) correctly sorts the last 2n=3 elements, so that the
elements (n + 1)=3 : : : 2n=3 are less than elements 2(n + 1)=3 : : : n, which are the
largest n=3 elements in A. The last call to Stooge-Sort(A; i; j�k) sorts correctly
(by induction hypothesis) the sorted elements are less than elements 2(n+1)=3 : : : n.
Thus the array A of size n is sorted.

b. Give a recurrence for the worst-case running time of Stooge-Sort and a tight
asymptotic (�-notation) bound on the worst-case running time.

Solution:

T (n) = 3T (
2n

3
) + �(1)

= �(nlog
3=2 3)

= �(n2:7:::):

c. Compare the worst-case running time of Stooge-Sort with that of Insertion-
Sort, Merge-Sort, Heapsort, and Quicksort. Do the professors deserve
tenure?

Solution: Stooge-Sort is the worst of all the algorithms { the professors do not
deserve tenure.

Insertion-Sort: �(n2)
Merge-Sort: �(n lgn)

Heapsort: �(n lgn)
Quicksort: �(n2)

Stooge-Sort: �(n2:7:::)
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