CPS 130 Homework 4 - Solutions

1. (CLRS 4.2-2) Argue that the solution to the recurrence

$$
T(n)=T(n / 3)+T(2 n / 3)+n
$$

is $\Omega(n \lg n)$ by appealing to a recursion tree.
Solution: The recursion tree for the recurrence is given in CLRS. Note that the values across the levels of the recursion tree sum to n. The shortest path from a root to a leaf is

$$
n \rightarrow \frac{1}{3} n \rightarrow\left(\frac{1}{3}\right)^{2} n \rightarrow \ldots \rightarrow 1
$$

Since $(1 / 3)^{k} n=1$ when $k=\log _{3} n$, the height of the tree is at least $\log _{3} n$. Thus the solution to the recurrence is at least $n \log _{3} n=\Omega(n \lg n)$.
2. Give asymptotic upper and lower bounds for the following recurrences. Assume $T(n)$ is constant for $n \leq 2$. Make your bounds as tight as possible, and justify your answers.

- $T(n)=T(n-1)+n$

Solution: Note that you cannot apply Master method. Assume $T(1)=1$ and iterate:

$$
\begin{aligned}
T(n) & =T(n-1)+n \\
& =T(n-2)+(n-1)+n \\
& =\ldots \\
& =T(n-1)+(n-1+1)+\ldots+n \\
& =T(1)+2+3+\ldots n \\
& =\sum_{i=1}^{n} i \\
& =\frac{n(n+1)}{2} \\
& =\Theta\left(n^{2}\right)
\end{aligned}
$$

- $T(n)=T(\sqrt{n})+1$

Solution: Note that you cannot apply Master method. Assume $T(2)=1$ and iterate:

$$
\begin{aligned}
T(n) & =T\left(n^{\frac{1}{2}}\right)+1 \\
& =T\left(n^{\frac{1}{4}}\right)+1+1 \\
& =\cdots \\
& =T\left(n^{\frac{1}{2^{2}}}\right)+i
\end{aligned}
$$

For this type of recurrence we cannot stop at 1 because $n^{\frac{1}{2^{2}}}$ cannot be 1 , except at the limit. The recursion depth is given by $n^{\frac{1}{2^{2}}}=2$, which gives $i=\log \log n$. Substituting in the relation above we get:

$$
\begin{aligned}
T(n) & =T(2)+\log \log n \\
& =\Theta(\log \log n)
\end{aligned}
$$

- $T(n)=2 T(n / 2)+n / \lg n$

Solution: Note that you cannot apply Master method. Assume $T(1)=1$ and iterate:

$$
\begin{aligned}
T(n) & =2 T\left(\frac{n}{2}\right)+\frac{n}{\log n} \\
& =2^{2} T\left(\frac{n}{2^{2}}\right)+2 \cdot \frac{\frac{n}{2}}{\log \frac{n}{2}} \\
& =\ldots \\
& =2^{i} T\left(\frac{n}{2^{i}}\right)+\sum_{k=0}^{i-1} \frac{n}{\log \frac{n}{2^{k}}} \\
& =2^{i} T\left(\frac{n}{2^{i}}\right)+\sum_{k=0}^{i-1} \frac{n}{\log n-k}
\end{aligned}
$$

The recursion depth is $i=\log _{2} n$ and substituting we get:

$$
\begin{aligned}
T(n) & =2^{\log _{2} n} T(1)+\sum_{k=0}^{\log _{2} n-1} \frac{n}{\log n-k} \\
& =n T(1)+n \cdot \sum_{k=0}^{\log _{2} n-1} \frac{1}{\log n-k} \\
& =n T(1)+n \cdot \sum_{k=1}^{\log _{2} n} \frac{1}{k} \\
& =n T(1)+n \cdot H_{\log n} \\
& =n T(1)+n \cdot \Theta(\log \log n) \\
& =\Theta(n \log \log n)
\end{aligned}
$$

Here we used the standard notation for the harmonic sum

$$
H_{n}=\sum_{k=1}^{n} \frac{1}{k}=\Theta(\log n)
$$

- $T(n)=T(n-1)+1 / n$

Solution: Assume $T(1)=1$ and iterate:

$$
\begin{aligned}
T(n) & =T(n-1)+\frac{1}{n} \\
& =T(n-2)+\frac{1}{n-1}+\frac{1}{n} \\
& =\ldots \\
& =T(n-i)+\frac{1}{n-i+1}+. .+\frac{1}{n}
\end{aligned}
$$

Taking $i=n-1$ we get:

$$
\begin{aligned}
T(n) & =T(1)+\frac{1}{2}+\ldots+\frac{1}{n} \\
& =\sum_{k=1}^{n} \frac{1}{k} \\
& =H_{n}=\Theta(\log n)
\end{aligned}
$$

