CPS 130 Homework 3 - Solutions

1. (CLRS 3-2) (a) and (b) only. Indicate, for each pair of expressions (A, B) below, whether A is O, o, Ω, ω , or Θ of B. Assume that $k \ge 1$, $\epsilon > 0$ and c > 1 are constants. Your answer should be in the form of a table with 'yes' or 'no' written in each box:

$$(\lg^k n, n^{\epsilon}), (n^k, c^n), (\sqrt{n}, n^{\sin n}), (2^n, 2^{n/2}), (n^{\lg m}, m^{\lg n}), (\lg(n!), \lg(n^n)).$$

Solution: For (a)-(f):

	(A, B)	0	0	Ω	ω	Θ
a.	(lg^kn, n^{ϵ})	yes	yes	no	no	no
b.	(n^k, c^n)	yes	yes	no	no	no
с.	$(\sqrt{n}, n^{\sin n})$	no	no	no	no	no
d.	$(2^n, 2^{n/2})$	no	no	yes	yes	no
e.	$(n^{\lg m}, m^{\lg n})$	yes	no	yes	no	yes
f.	$(\lg(n!), \lg(n^n))$	yes	no	yes	no	yes

2. (CLRS A.1-1) Find a simple formula for $\sum_{k=1}^{n} (2k-1)$.

Solution:

$$\sum_{k=1}^{n} (2k-1) = 2 \sum_{k=1}^{n} k - n$$
$$= 2 \frac{n(n+1)}{2} - n$$
$$= n^{2} + n - n$$
$$= n^{2}.$$

3. Prove by induction that $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$.

Solution: For the base case n = 1,

$$\sum_{i=1}^{n=1} i^2 = 1 = \frac{1 \cdot 2 \cdot 3}{6} = \frac{n(n+1)(2n+1)}{6}.$$

Assume that the statement is true for some k and use this to show k + 1:

$$\sum_{i=1}^{k+1} i^2 = \left(\sum_{i=1}^k i^2\right) + (k+1)^2 = \frac{k(k+1)(2k+1)}{6} + \frac{6(k+1)^2}{6} = \dots = \frac{(k+1)(k+2)(2k+3)}{6}$$

Let P(n) denote

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Since we proved the statement P(1) and showed that the inductive hypothesis $P(k) \Rightarrow P(k+1)$, P(n) is true for all $n \ge 1$.

4. Solve the recurrence: $T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n-1) + n(n-1) & \text{if } n \ge 2 \end{cases}$ Hint: use $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$.

Solution: By iteration:

$$T(n) = T(n-2) + (n-1)(n-2) + n(n-1)$$

= ...
= $T(1) + \sum_{i=1}^{n} i(i-1)$
= $1 + \sum_{i=1}^{n} i^2 - \sum_{i=1}^{n} i$
= $1 + \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2}$
= $1 + \frac{n(n^2 - 1)}{3}$
= $\Theta(n^3)$

Comments: If you find the solution of a recurrence by iteration (or master method) you do not need to prove it by induction. If you guess the solution, then you must prove it by induction.