
CPS 130 Homework 21 - Solutions

1. Consider a directed weighted graph with non-negative weights and V vertices arranged
on a rectangular grid. Each vertex has an edge to its southern, eastern and southeastern
neighbors (if existing). The northwest-most vertex is called the root. The �gure below
shows an example graph with V=12 vertices and the root drawn in black:

2 7 1

1 9 5

13 2 6

11

6

17

3

8

4

0

8 0 2

1 7

0

4

Assume that the graph is represented such that each vertex can access all its neighbors
in constant time.

(a) How long would it take Dijkstra's algorithm to �nd the length of the shortest path
from the root to all other vertices?

Solution: Dijkstra's algorithm has running time O(E logV ). In the graph described
above, each vertex has at most three outgoing edges, so that the number of edges in
the graph is at most 3V , that is, E = O(V ). In this case, Dijkstra's algorithm will
run in O(V logV ).

(b) Describe an algorithm that �nds the length of the shortest paths from the root to
all other vertices in O(V ) time.

Solution: This question is easily answered if you realize the graph is a directed
acyclic graph (or dag), since the SSSP problem can be solved on dags in �(V + E)
time using e.g. the Dag-Shortest-Paths algorithm. Because in this case we have
E = O(V ), we can compute SSSP using Dag-Shortest-Paths in O(V ).

You can also design your own O(V ) algorithm, in which case you must analyze its
running time and prove correctness. Here is one example algorithm. The paths from
the root to all vertices with in-degree 1 (�rst row, �rst column) are unique, so we
can �nd the shortest paths traveling along the path from the root and summing the
weights of the edges encountered along the way. Otherwise a vertex u has in-degree
3, that is, there are three predecessors pu1 ; pu2; pu3 of u. If we already know the
shortest paths Æ(r; pu1), Æ(r; pu2), Æ(r; pu3) from the root r to the predecessors of u
then the shortest path Æ(r; u) from r to u is given by

minfÆ(r; pu1) + w(pu1; u); Æ(r; pu2) + w(pu2; u); Æ(r; pu3) + w(pu3; u)g ;

1



where w(pu(�); u) denotes the weight of the edge from a predecessor of u to u. Thus
if all Æ(pu(�); u) are already known, we can �nd the shortest path from the root at
any vertex u in O(1) time, and we perform this computation once for each vertex.
To ensure we perform computations in the correct order (i.e. we know Æ(r; pu(�))
before attempting to compute Æ(r; u)) we must �rst perform a topological sort of the
vertices.

A topological sort takes time O(V + E) = O(V ) and our algorithm performs O(1)
work at each vertex, so the total running time is O(V ).

We now need to prove our algorithm correctly solves SSSP. For any vertex with
in-degree 1 the path from the root is unique and therefore must be the shortest
path. For all other vertices, we prove correctness by induction on a vertex v in the
topological ordering of the vertices. The �rst vertex is the root, and the path from
the root to itself is zero and therefore the shortest path. Assume that at a vertex v

the shortest paths from the root to all vertices before v in the topological order are
known. In particular, the shortest paths to all predecessors of v (of which there are
three) are known. The only possible paths from the root to v must pass through a
predecessor pv(�) of v, and from each predecessor there is only one possible (shortest)
path to v (i.e. Æ(pv(�) ; v) = w(pv(�); v), so that the possible shortest paths to v are in
the set

fÆ(r; pu1) + w(pu1; u); Æ(r; pu2) + w(pu2; u); Æ(r; pu3) + w(pu3; u)g :

The minimum value in this set must be the shortest path from r to v.

(c) Describe an eÆcient algorithm for solving the all-pair-shortest-paths problem on the
graph (it is enough to �nd the length of each shortest path).

Solution: We can solve APSP by computing SSSP for each vertex in the graph. In
(b) we gave an O(V ) algorithm to solve SSSP, thus we can solve APSP in O(V 2).
This is optimal, since there are O(V 2) pairs in the graph.

2



2. Consider a directed weighted graph with non-negative weights which is formed by adding
an edge from every leaf in a binary tree to the root of the tree. Let the graph/tree have
n vertices. An example of such a graph with n = 7 could be the following:

9

2

4

7

82

45

13

9

6

7

We want to design an algorithm for �nding the shortest path between two vertices in such
a graph.

(a) How long time would it take Dijkstra's algorithm to solve the problem?

Solution: Dijkstra's algorithm has running time O(E logV ). In this graph, each
vertex has at most two outgoing edges, so that the number of edges in the graph is at
most 2V . Thus we have E = O(V ) and Dijkstra's algorithm will run in O(V logV ).

(b) Describe and analyze a more eÆcient algorithm for the problem.

Solution: We �rst make some observations: There is exactly one vertex in the
graph with in-degree > 1, call it r. We can identify r in O(V ) time (CLRS 22.1-1).
The shortest path Æ(s; t) between two vertices s and t will then either (i) not pass
through r or (ii) pass through r. We can check which of these cases apply in O(V )
time using a modi�ed graph search (BFS, DFS) at s which `ignores' all outgoing
edges of vertices with out-degree 1.

Consider case (i). If a path from s to t does not pass through r then it is unique,
and moreover we can �nd it in O(V ) time { Æ(s; t) is the sum of edge weights on the
path from t back up to s.

Now consider case (ii). We know the path for s to t passes through r, and that the
path from r to t is unique. So we only need to �nd Æ(s; r). This can be done in
O(V ) using SSSP for directed acyclic graphs { we just `ignore' the outgoing edges
of r and apply the Dag-Shortest-Paths algorithm at vertex s. Although there is
only one path from r to t, we still have to �nd it. But we already know how to do
this in O(V ) from case (i). Then Æ(s; t) = Æ(s; r) + Æ(r; t).

Every operation we perform is O(V ) and we do at most two searches, at most one
Dag-Shortest-Paths, and one scan of the graph to identify r. Thus the total
running time of our algorithm is O(V ).

Our algorithm is clearly correct for case (i) as a unique path between two vertices
must be the shortest one. For case (ii), Æ(s; r) + Æ(r; t) must give the shortest path
from s to t, because Dag-Shortest-Paths will correctly return the shortest path
from s to r and the path from r to t is unique.

3


