
CPS 130 Homework 2 - Solutions

1. (CLRS 2.2-4) How can we modify almost any algorithm to have a good best-case running
time?

Solution: Hardcode the solution for some particular input, and check whether the input
is that one. If so, simply output the hardcoded solution. One could also check whether
the problem is already solved (when sorting, for instance, check �rst if input is already
sorted).

2. (CLRS 3.1-3) Explain why the statement `The running time of algorithm A is at least
O(n2)' is content free.

Solution: This just checks that you understand what an upper bound is. The statement
is saying \the running time is at least at most n2", but says nothing about the upper
bound, which could be O(n3), O(2n), etc. We cannot extract any information regarding
lower bounds either, so the statement is meaningless and content free.

3. CLRS 2-4 (The inversion problem).

Solution:

a.

(i; j) A[i] > A[j]
(1; 5) 2 > 1
(2; 5) 3 > 1
(3; 5) 8 > 1
(4; 5) 6 > 1
(3; 4) 8 > 6

b. The reverse-ordered list hn; n� 1; : : : ; 2; 1i has the most inversions. The number of
inversions is

n�1X
i=1

i =
n(n� 1)

2
:

c. Let f(n) be the number of inversions of array A[1::n]. The running time of insertion
sort given A is 
(f(n)). Referring to page 8 of CLR, we can express the run time of
insertion sort as

T (n) = c�

nX
j=2

(tj � 1) + c�n + c:

The number of times the contents of the while loop executes for index j is (tj � 1).
The loop only executes if 0 < i < j and A[i] > A[j], which means (i; j) is an
inversion. The loop removes only one inversion at a time, so in (tj � 1) iterations,
all inversions for element A[j] have been removed. The total number of inversions is

f(n) =
nX

j=2

(tj � 1):



The total runtime can now be expressed as

T (n) = c�f(n) + c�n + c > c�f(n) = 
(f(n)):

Therefore, the running time of insertion sort is lower bounded by the number of
inversions.

d. Execute merge sort on the array A. Assume sorting is done from left to right.
Merge(A; p; q; r) merges arrays L = A[p::q] and R = A[q + 1::r]. Since L and R

are sorted, there are no inversions in L or R, only inversions between L and R.
Refer to page 12 CLR for the outline of Merge. In merging L and R, we select
the smallest element from the top of stacks L and R to put into our sorted list.
To count inversions, every time we select an element from list R, we increment a
counter by the number of unselected elements in list L. The running time is identical
to merge sort or �(n lgn). To show correctness, we must show that every inversion
is counted exactly once. Since L and R are sorted, there are no inversions in L or
R, only inversions between L and R. If an element r from list R is selected ahead of
k items in list L, then r is less than the remaining k elements l1; l2; : : : ; lk in list L,
corresponding to k inversions. Selecting r to be placed next in the sorted merged list
removes all k inversions. No new inversions are created in the merging step, since
the resulting array A[p::r] is sorted and therefore has no inversions. No inversion can
be counted twice, since removing an inversion sorts L and R into one combined list,
and inversions can only exist between lists. Our new modi�ed merge routine counts
all inversions correctly in �(n lgn) time.

4. (part of CLRS 3-3) Order the following expressions by their asymptotic growth and jus-

tify your answer.

2n; n!; (logn)!; n3; en; 2log2 n; n logn; 22
n

; nlog log n:

Solution: 2log2 n < n logn < n3 < (logn)! < nlog log n < 2n < en < n! < 22
n

.

� One typical way to compare the growth of two functions is to compute their limit
when n goes to 1, that is, limn!1

f(n)
g(n)

. If the limit is �nite, then f and g have the

same order of growth (f = �(g)). If the limit is 1 then f > g (f = w(g)). If the
limit is zero, than f < g (f = o(g)).

� What you should remember is that any (positive) polynomial growth faster than any
logarithm, and any (positive) exponential growth faster than any polynomial, that
is:

loga < nb < cn; for any a; b > 0 and any c > 1

� One other trick you can use is to take the logarithm. For instance, nlg lg n =
(lgn)lg n < 2n because lgn lg lgn < n.

� Typically you can use the Stirling formula to prove bounds involving n!:
p
2�n

�
n

e

�n
� n! �

p
2�n

�
n

e

�n
e1=12n

so that comparing n! and 22
n

is the same as taking the logarithm of both and com-
paring n lgn and 2n. The �rst is smaller than the second, since n lgn is polynomially
bounded and 2n is exponential.

2


