CPS 130 Homework 17 - Solution

1. In this problem we consider two stacks A and B manipulated using the following operations (n denotes the size of A and m the size of B):

- Push $A(x)$: Push element x on stack A.
- PushB(x): Push element x on stack B.
- MultiPop $A(k): \operatorname{Pop} \min \{k, n\}$ elements from A.
- MultiPop $B(k): \operatorname{Pop} \min \{k, m\}$ elements from B.
- Transfer (k) : Repeatedly pop an element from A and push it on B, until either k elements have been moved or A is empty.

Assume that A and B are implemented using doubly-linked lists such that PushA and PushB, as well as a single pop from A or B, can be performed in $O(1)$ time worst-case.
(a) What is the worst-case running time of the operations MultiPopA, MultiPopB and Transfer?
Solution: When both operations have to pop the entire stack, the running time of each op is the size of the stack, so worst case MultiPopA runs in $O(n)$ and MultiPopB runs in $O(m)$ time. Transfer involves popping elements off of A and pushing them onto B. Since in the worst case we transfer the entire stack on A, we use n pops and n pushes for a worst case running time of $O(n)$.
(b) Define a potential function $\Phi(n, m)$ and use it to prove that the operations have amortized running time $O(1)$.
Solution: Define $\Phi(n, m)=3 n+m$. Initially the potential is zero, and for nonempty stacks, the potential is always positive. The amortized costs are as follows:

PushA

$$
\hat{c}_{i}=c_{i}+\Phi\left(D_{i+1}\right)-\Phi\left(D_{i}\right)
$$

$$
=1+3(n+1)+m-(3 n+m)
$$

$$
=4
$$

$$
\begin{aligned}
& \text { MultiPopA } \\
& \qquad \begin{aligned}
\hat{c}_{i} & =k+3(n-k)+m-(3 n+m) \\
& =-2 k
\end{aligned}
\end{aligned}
$$

MultiPopB

PushB

$$
\begin{aligned}
\hat{c_{i}} & =k+3 n+(m-k)-(3 n+m) \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
\hat{c}_{i} & =1+3 n+(m+1)-(3 n+m) \\
& =2
\end{aligned}
$$

Transfer

$$
\begin{aligned}
\hat{c_{i}} & =2 k+3(n-k)+(m+k)-(3 n+m) \\
& =0
\end{aligned}
$$

The amortized cost of each function is bounded above by a constant, so the overall run time for all operations is $O(1)$. It is ok to have a negative amortized cost in the MultiPopA example. PushA pays for a possible transfer, but a MultiPopA makes a transfer unnecessary even though Push A has paid for it.

