
CPS 130 Homework 17 - Solution

1. In this problem we consider two stacks A and B manipulated using the following operations
(n denotes the size of A and m the size of B):

• PushA(x): Push element x on stack A.

• PushB(x): Push element x on stack B.

• MultiPopA(k): Pop min{k, n} elements from A.

• MultiPopB(k): Pop min{k, m} elements from B.

• Transfer(k): Repeatedly pop an element from A and push it on B, until either k
elements have been moved or A is empty.

Assume that A and B are implemented using doubly-linked lists such that PushA and
PushB, as well as a single pop from A or B, can be performed in O(1) time worst-case.

(a) What is the worst-case running time of the operations MultiPopA, MultiPopB and
Transfer?

Solution: When both operations have to pop the entire stack, the running time of
each op is the size of the stack, so worst case MultiPopA runs in O(n) and MultiPopB
runs in O(m) time. Transfer involves popping elements off of A and pushing them
onto B. Since in the worst case we transfer the entire stack on A, we use n pops and
n pushes for a worst case running time of O(n).

(b) Define a potential function Φ(n, m) and use it to prove that the operations have
amortized running time O(1).

Solution: Define Φ(n, m) = 3n + m. Initially the potential is zero, and for non-
empty stacks, the potential is always positive. The amortized costs are as follows:

PushA

ĉi = ci + Φ(Di+1) − Φ(Di)

= 1 + 3(n + 1) + m − (3n + m)

= 4

PushB

ĉi = 1 + 3n + (m + 1) − (3n + m)

= 2

MultiPopA

ĉi = k + 3(n − k) + m − (3n + m)

= −2k

MultiPopB

ĉi = k + 3n + (m − k) − (3n + m)

= 0

Transfer

ĉi = 2k + 3(n − k) + (m + k) − (3n + m)

= 0



The amortized cost of each function is bounded above by a constant, so the overall
run time for all operations is O(1). It is ok to have a negative amortized cost in the
MultiPopA example. PushA pays for a possible transfer, but a MultiPopA makes a
transfer unnecessary even though PushA has paid for it.

2


