
CPS 130 Homework 15 - Solutions

1. In this problem we consider the 0-1 knapsack problem: Given n items, with item
i being worth v[i] dollars and having weight w[i] pounds, fill a knapsack of capacity m
pounds with the maximal possible value.

Example: Given a knapsack of capacity 50, the maximal value obtainable
with three items of value $60, $100, and $120 and weights 10, 20, and 30,
respectively, is $220.

20 20

30

$120

30

10

= $220

$60 $100 Optimal solution

The algorithm Knapsack(i,j) below returns the maximal value obtainable when filling a
knapsack of capacity j using items among items 1 through i (Knapsack(n,m) solves our
problem). The algorithm works by recursively computing the best solution obtainable
with the last item and the best solution obtainable without the last item, and returning
the best of them.

Knapsack(i,j)

IF w[i] <= j THEN

with = v[i] + Knapsack(i-1, j-w[i])

ELSE

with = 0

END IF

without = Knapsack(i-1,j)

RETURN max{with, without}

END

(a) Show that the running time T of Knapsack(n, m) is exponential in n or m. (Hint:
look at the case where w[i] = 1 for all 1 ≤ i ≤ n and show that T (n, m) =
Ω(2min(m,n))).

(b) Describe an O(n · m) algorithm for computing the value of the optimal solution.

Solution:

(a) Following the hint, if w[i] = 1 then it is clear that T (n, m) > 2T (n − 1, m − 1) + 1.
This recurrence, which runs for min(m, n) steps, gives that T (n, m) = Ω(2min(m,n)).

(b) We create a table of size [n][m] in which to store our results of prior runs. The
modified algorithm would be as follows:

Knapsack(i,j)

IF table[i][j] != 0 THEN

RETURN table[i][j]

IF w[i] <= j THEN

with = v[i] + Knapsack(i-1, j-w[i])

ELSE

with = 0

without = Knapsack(i-1,j)

table[i][j] = max{with, without}

RETURN max{with, without}

END

This will run in O(n · m) time as we fill each entry in the table at most once, and
there are nm spaces in the table.

2

