
CPS 130 Homework 13 - Solutions

1. (CLRS 14.1-5) Given an element x in an n-node order-statistic tree and a natural num-
ber i, how can the ith successor of x in the linear order of the tree be determined in
O(log n) time?

Solution: The data structure should support the following two operations: OS-Rank(T, x),
which returns the position of x in the linear order determined by an inorder tree walk of
T in O(lg n) time, and OS-Select(x, i), which returns a pointer to the node containing
the ith smallest key in the subtree rooted at x in O(lg n) time. The ith successor of x is
given by OS-Select(x,OS-Rank(T, x)+i), which will also run in O(lg n) time.

2. (CLRS 14.2-1) Show how the dynamic-set queries MINIMUM, MAXIMUM, SUCCES-
SOR and PREDECESSOR can each be supported in O(1) worst-case time on an aug-
mented order-statistic tree. The asymptotic performance of other operations should not
be affected. (Hint: Add pointers to nodes.).

Solution:

3. In this problem we consider a data structure for maintaining a multi-set M . We want to
support the following operations:

• Init(M): create an empty data structure M .

• Insert(M, i): insert (one copy of) i in M .

• Remove(M, i): remove (one copy of) i from M .

• Frequency(M, i): return the number of copies of i in M .

• Select(M, k): return the k’th element in the sorted order of elements in M .

If for example M consists of the elements
< 0, 3, 3, 4, 4, 7, 8, 8, 8, 9, 11, 11, 11, 11, 13 >

then Frequency(M, 4) will return 2 and Select(M, 6) will return 7.

Let |M | and ‖M‖ denote the number of elements and the number of different elements
in M , respectively.

(a) Describe an implementation of the data structure such that Init(M) takes O(1) time
and all other operations take O(log ‖M‖) time.

Solution: The idea is to store the distinct elements of the multi-set in ared-black
tree. For each node x in the tree which stores the value k maintain a counter c(x) =
how many elements in the multi-set are equal to k. Init(M) simply initializes the
red-black tree. Insert(M, i) first searches for i in the tree: if it exists, it increments
its counter, otherwise it inserts it and sets its counter to 1. Remove(M, i) searches
for i in the tree and if it exists, it decrements its counter, and if the counter becomes

0 it deletes that node from the tree. Frequency(M, i) searches for i and returns its
counter.

In order to implement Select(M, k) we need to augment the tree with extra informa-
tion such that each node can find out its rank. This is basically the same problem
as augmenting a red-black tree in order to answer order statistics queries in O(lg n)
time. We store in each node x a field size(x) which is the total number of nodes in
the subtree rooted at x, which can be computed as

size(x) = size(left(x)) + size(right(x)) + counter(x).

(b) Design an algorithm for sorting a list L in O(|L| log ‖L‖) time using this data struc-
ture.

Solution: Insert each element from the list into this data structure and then select
each element.

For i = 1 to |L| Insert(M, L[i])
For i = 1 to |L| Select(M, i).

As the tree will contain ‖L‖ distinct elements, each call of Insert() or Select() will
take O(log ‖L‖) time.

2

