
CPS 130 Homework 12 - Solutions

1. (CLRS 13.1-5) Show that the longest simple path from a node x in a red-black tree to a
descendant leaf has length at most twice that of the shortest simple path from node x to
a descendant leaf.

Solution: From the red-black properties, we have that every simple path from node x to
a descendant leaf has the same number of black nodes and that red nodes do not occur
immediately next to each other on such paths. Then the shortest possible simple path
from node x to a descendant leaf will have all black nodes, and the longest possible simple
path will have alternating black and red nodes. Since the leaf must be black, there are at
most the same number of red nodes as black nodes on the path.

2. (CLRS 13.1-6) What is the largest possible number of internal nodes in a red-black tree
with black-height k? What is the smallest possible number?

Solution: The largest possible number of internal nodes in a red-black tree with black-
height k is 22k − 1. The smallest possible number is 2k − 1.

3. (CLRS 13.3-2) Show the red-black trees that result after successively inserting the keys
41, 38, 31, 12, 19, 8 into an initially empty red-black tree.

Solution:

4. (CLRS 13.4-3) Use the red-black tree resulting from the previous problem. Show the red-
black trees that result from the successive deletion of the keys in order 8, 12, 19, 31, 38, 41.

Solution:

5. (CLRS 13-2) The join operation takes two dynamic sets S1 and S2 and an element x such
that for any x1 ∈ S1 and x2 ∈ S2, we have key[x1] ≤ key[x] ≤ key[x2]. It returns a set
S = S1 ∪ {x} ∪ S2. In this problem, we investigate how to implement the join operation
on red-black trees.

(a) Given a red-black tree T , we store its black-height as the field bh[T ]. Argue that this
field can be maintained by RB-Insert and RB-Delete without requiring extra
storage in the tree and without increasing the asymptotic running times. Show while
descending through T , we can determine the black-height of each node we visit in
O(1) time per node visited.

Solution: For an empty red-black tree we initialize its bh to 0. Insertions can only
increases the black height and deletions can only decrease the black height. During
an insertion if rebalancing goes up to the root and the root becomes red and then
painted black, we increase bh by 1. This is the only place where black nodes are
added in the tree. During a deletion, if the extra black goes up to the root then we
decrease bh by one. This is the only place where the black nodes are removed from
the tree. Thus bh is maintained with only O(1) cost per operation. When going
down the tree we can determine the bh of a node visited simply by starting with bh



at the root and subtracting 1 for each black node visited along the path. This is
done in O(1) per node.

We wish to implement the operation RB-Join(T1, x, T2) which destroys T1 and T2

and returns a red-black tree T = T1 ∪ {x} ∪ T2. Let n be the total number of nodes
in T1 and T2.

(b) Assume without loss of generality that bh[T1] ≥ bh[T2]. Describe an O(lg n) time
algorithm that finds a black node y in T1 with the largest key from among those
nodes whose black-height is bh[T2].

Solution: The idea is to move down in T1 following always right links (or a left
only if a right link does not exist), subtracting 1 from bh (initially a copy of bh[T1])
for each black node encountered until bh = bh[T2]. Then y is the first black node
encountered after the condition above is met (at most 2 hops away from where the
condition is met). Since bh[T1] ≥ bh[T2] and there are no discontinuities in the black
height, such a node will be eventually found. In the worst case (bh[T2] = 1), y will
be found after at most O(lg n) steps.

(c) Let Ty be the subtree rooted at y. Describe how Ty can be replaced by Ty ∪{x}∪T2

in O(1) time without destroying the binary-search-tree property.

Solution: We create a new subtree Tx with root x, left child Ty, right child T2

and we attach it to the parent of y. Since both y and the root of T2 are black, we
paint x red (see also next question). The binary-search-tree property holds since all
elements in Ty are less than or equal to x and all in T2 are greater than or equal to
x. Moreover the overall black height of T1 is not affected; Ty and T2 have the same
black height and x is painted red. The operation takes O(1).

(d) What color should we make x so that red-black properties 1, 2, and 4 are maintained?
Describe how property 3 can be enforced in O(lg n) time.

Solution: As mentioned above, x must be painted red. Then restructuring opera-
tions can be applied in case y’s parent was red. Changes will propagate at most up
to the root, thus giving a time upper bound of O(lg n).

(e) Argue that the running time of RB-Join is O(lg n).

Solution: Summing up the costs of the previous steps, the total time requirement
is O(lg n).

2


