CPS 130 Homework 17 Amortized Analysis

due Thu June 13th

Write and justify your answers in the space provided.¹

- 1. In this problem we consider two stacks A and B manipulated using the following operations (n denotes the size of A and m the size of B):
 - PushA(x): Push element x on stack A.
 - PushB(x): Push element x on stack B.
 - MultiPopA(k): Pop min $\{k, n\}$ elements from A.
 - MultiPopB(k): Pop min $\{k, m\}$ elements from B.
 - Transfer(k): Repeatedly pop an element from A and push it on B, until either k elements have been moved or A is empty.

Assume that A and B are implemented using doubly-linked lists such that PushA and PushB, as well as a single pop from A or B, can be performed in O(1) time worst-case.

(a) What is the worst-case running time of the operations *MultiPopA*, *MultiPopB* and *Transfer*?

 $^{^{1}}$ Collaboration is allowed, even encouraged, provided that the names of the collaborators are listed along with the solutions. Students must write up the solutions on their own.

(b) Define a potential function $\Phi(n,m)$ and use it to prove that the operations have amortized running time O(1).