
CPS 130 Homework 12
Red-Black Trees

Write and justify your answers in the space provided.1

1. (CLRS 13.1-5) Show that the longest simple path from a node x in a red-black tree to a
descendant leaf has length at most twice that of the shortest simple path from node x to
a descendant leaf

2. (CLRS 13.1-6) What is the largest possible number of internal nodes in a red-black tree
with black-height k? What is the smallest possible number?

1Collaboration is allowed, even encouraged, provided that the names of the collaborators are listed along
with the solutions. Students must write up the solutions on their own.



3. (CLRS 13-2) The join operation takes two dynamic sets S1 and S2 and an element x such
that for any x1 ∈ S1 and x2 ∈ S2, we have key[x1] ≤ key[x] ≤ key[x2]. It returns a set
S = S1 ∪ {x} ∪ S2. In this problem, we investigate how to implement the join operation
on red-black trees.

(a) Given a red-black tree T , we store its black-height as the field bh[T ]. Argue that this
field can be maintained by RB-Insert and RB-Delete without requiring extra
storage in the tree and without increasing the asymptotic running times. Show while
descending through T , we can determine the black-height of each node we visit in
O(1) time per node visited.

We wish to implement the operation RB-Join(T1, x, T2) which destroys T1 and T2

and returns a red-black tree T = T1 ∪ {x} ∪ T2. Let n be the total number of nodes
in T1 and T2.

(b) Assume without loss of generality that bh[T1] ≥ bh[T2]. Describe an O(lg n) time
algorithm that finds a black node y in T1 with the largest key from among those
nodes whose black-height is bh[T2].

(c) Let Ty be the subtree rooted at y. Describe how Ty can be replaced by Ty ∪{x}∪T2

in O(1) time without destroying the binary-search-tree property.

(d) What color should we make x so that red-black properties 1, 2, and 4 are maintained?
Describe how property 3 can be enforced in O(lg n) time.

(e) Argue that the running time of RB-Join is O(lg n)

2



3


