Lecture 24: NP-Completeness Proofs
 (CLRS 34.5.1)

June 24th, 2002

1 NP-Completeness

- We have been discussing complexity theory
- classification of problems according to their difficulty
- We introduced the classes $P, N P$ and $E X P$

$$
\begin{aligned}
& E X P=\text { \{Decision problems solvable in exponential time }\} \\
& P=\text { \{Decision problems solvable in polynomial time\} } \\
& N P=\text { \{Decision problems where YES solution can verified in polynomial time }
\end{aligned}
$$

- A major open question in theoretical computer science is if $P=N P$ or not.
- We also introduced the notion of polynomial time reductions
$X \leq_{P} Y$:
A problem X is polynomial time reducible to a problem $Y\left(X \leq_{P} Y\right)$ if we can solve X in a polynomial number of calls to an algorithm for Y (and the instance of problem Y we solve can be computed in polynomial time from the instance of problem X).
- We then introduced the class of $N P$-complete problems $N P C$

A problem Y is in $N P C$ if
a) $Y \in N P$
b) $X \leq_{P} Y$ for all $X \in N P$
and discussed how the problems in $N P C$ are the hardest problems in $N P$ and the key to resolving the $P=N P$ question.

- If one problem $Y \in N P C$ is in P then $P=N P$.
- If one problem $Y \in N P$ is not in P then $N P C \cap P=\emptyset$.
- By now a lot of problems have been proved $N P$-complete
- We think the world looks like this-but we really do not know:

- If someone found a polynomial time solution to a problem in NPC our world would "collapse" and a lot of smart people have tried really hard to solve NPC problems efficiently
\Downarrow
We regard $Y \in N P C$ a strong evidence for Y being hard!

2 NP-Complete Problems

- The following lemma helps us to prove a problem $N P$-complete using another $N P$-complete problem.
Lemma: If $Y \in N P$ and $X \leq_{P} Y$ for some $X \in N P C$ then $Y \in N P C$.
- To prove $Y \in N P C$ we just need to prove $Y \in N P$ (often easy) and reduce problem in $N P C$ to Y (no lower bound proof needed!).
- Finding the first problem in $N P C$ is somewhat difficult and require quite a lot of formalism
- The first problem proven to be in NPC was SAT:

Give a boolean formula, is there an assignment of true and false to the variables that makes the formula true?

- For example:

$$
\text { Can }\left(\left(x_{1} \Rightarrow x_{2}\right) \vee \neg\left(\left(\neg x_{1} \Leftrightarrow x_{3}\right) \vee x_{4}\right)\right) \wedge \neg x_{2} \text { be satisfied? }
$$

- Last time we discussed what seems to be a easier problem 3SAT: Given a formula in 3-CNF, is it satisfiable?
- A formula is in 3-CNF (conjunctive normal form) if it consists of an And of 'clauses' each of which is the OR of 3 'literals' (a variable or the negation of a variable)
- Example: $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3}\right)$
- We prove that 3 SAT is in $N P C$, that is, that it is as hard as general SAT.
$-3 \mathrm{SAT} \in N P$
- SAT $\leq_{P} 3$ SAT
(we showed how to transform general formula into 3-CNF in polynomial time.)

3 Clique

- NP-complete problems arise in many domains
- Many important graph problems are in NPC.
- Clique: Given a graph $G=(V, E)$ decide if there is a subset $V^{\prime} \subset V$ of size k such that there is an edge between every pair of vertices in V^{\prime}
- Decision version of problem of finding maximal clique.

Example (clique of size 4):

- We could of course solve Clique by testing each of the $\binom{|V|}{k}$) ways of choosing subset of size k.
- but would take exponential time for $k=\Theta(|V|)$
- Clique is indeed hard:

Theorem: Clique $\in N P C$
Proof:

- Clique $\in N P:$ Given a subset V^{\prime} we can easily check in polynomial time that $\left|V^{\prime}\right|=k$ and that V^{\prime} is a clique.
- 3 SAT \leq_{P} CLique (somewhat surprising since formulas seem to have little to do with graphs):
* We construct a graph $G=(V, E)$ from a k clause formula $\phi=C_{1} \wedge C_{2} \wedge C_{3} \cdots \wedge C_{k}$ in 3-CNF:
For each clause $C_{r}=\left(l_{1}^{r} \vee l_{2}^{r} \vee l_{3}^{r}\right)$ we place triple of vertices $v_{1}^{r}, v_{2}^{r}, v_{3}^{r}$ in V.
Vertices v_{i}^{r} and v_{j}^{s} are connected if
a) $r \neq s$
b) l_{i}^{r} and l_{j}^{s} are consistent (not negations of each other)

Example: $\phi=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3}\right)$

* Graph can be constructed in polynomial time.
* We have ϕ satisfiable $\Leftrightarrow G$ has clique of size k :
(Example: ϕ satisfiable by $x_{1}=0, x_{2}=0, x_{3}=1$ and set of white vertices is a clique of size 3.)
\Rightarrow :
- Each clause C_{r} contains at least one literal l_{i}^{r} assigned 1
- Each such literal corresponds to vertex v_{i}^{r}; pick such a vertex in each clause $\Rightarrow k$ vertices V^{\prime}
- For any two vertices $v_{i}^{r}, v_{j}^{s} \in V^{\prime}(r \neq s)$ both corresponding literals l_{i}^{r} and l_{i}^{s} are mapped to 1
\Rightarrow they are not complements
\Rightarrow edge in G between v_{i}^{r} and v_{j}^{s}
$\Rightarrow V^{\prime}$ clique.
\Leftarrow :
- Let V^{\prime} be clique of size $k \Rightarrow V^{\prime}$ contains exactly one vertex for each triple (no edges between vertices in triple)
- We can assign 1 to each literal l_{i}^{r} corresponding to $v_{i}^{r} \in V$ since G contains no edges between inconsistent literals
- Each clause is satisfiable $\Rightarrow \phi$ satisfiable.

4 Examples of other problems in $N P C$

- As mentioned a lot of problems have been proved to be in $N P C$ (and thus we believe them to be hard)
- One example is Vertex-cover: Given a graph $G=(V, E)$ decide if there is a set $V^{\prime} \subset V$ of size k, such that for each edge $e=(u, v) \in E, u \in V^{\prime}$ or $v \in V^{\prime}$ (or both).
- Decision version of finding minimal vertex cover.
- We can prove Vertex-cover $\in N P$ and Clique \leq_{P} Vertex-cover which means that Vertex-cover $\in N P C$.
- We can also prove that Vertex-cover \leq_{P} HAM-Cycle and we have already discussed that HAM-Cycle \leq_{P} TSP, which means that both HAM-Cycle and TSP are $N P$-complete.
- We can illustrate our NPC proofs using the following "reduction-graph":

- As mentioned many more problems have been shown $N P$-complete.
- Even though many important problems are $N P$-complete, it doesn't mean that we have given up on solving them. Often we are able to solve interesting instances because e.g.
- they are small (exponential time algorithms work)
- they are special (solvable in polynomial time)
- we can find near optimal solutions (many so-called approximation algorithms have been developed for NPC problems in recent years. For example, its very easy to design algorithm that computes a vertex cover for a graph of size at most twice the minimal cover).

