Lecture 24: NP-Completeness Proofs (CLRS 34.5.1)

June 24th, 2002

1 NP-Completeness

• We have been discussing *complexity theory*

- classification of problems according to their difficulty

• We introduced the classes P, NP and EXP

EXP	=	{Decision problems solvable in exponential time}
P	=	{Decision problems solvable in polynomial time}
NP	=	$\{Decision problems where YES solution can verified in polynomial time\}$

- A major open question in theoretical computer science is if P = NP or not.
- We also introduced the notion of *polynomial time reductions*

 $X \leq_P Y$:

A problem X is polynomial time reducible to a problem Y ($X \leq_P Y$) if we can solve X in a polynomial number of calls to an algorithm for Y (and the instance of problem Y we solve can be computed in polynomial time from the instance of problem X).

• We then introduced the class of NP-complete problems NPC

A problem Y is in NPC if a) $Y \in NP$ b) $X \leq_P Y$ for all $X \in NP$

and discussed how the problems in NPC are the hardest problems in NP and the key to resolving the P = NP question.

- If one problem $Y \in NPC$ is in P then P = NP.
- If one problem $Y \in NP$ is not in P then $NPC \cap P = \emptyset$.
- By now a lot of problems have been proved NP-complete
- We think the world looks like this—but we really do not know:

- If someone found a polynomial time solution to a problem in NPC our world would "collapse" and a lot of smart people have tried really hard to solve NPC problems efficiently
 - ₩

We regard $Y \in NPC$ a strong evidence for Y being hard!

2 NP-Complete Problems

• The following lemma helps us to prove a problem *NP*-complete using another *NP*-complete problem.

Lemma: If $Y \in NP$ and $X \leq_P Y$ for some $X \in NPC$ then $Y \in NPC$

- To prove $Y \in NPC$ we just need to prove $Y \in NP$ (often easy) and reduce problem in NPC to Y (no lower bound proof needed!).
- Finding the first problem in NPC is somewhat difficult and require quite a lot of formalism
 - The first problem proven to be in NPC was SAT:
 - Give a boolean formula, is there an assignment of true and false to the variables that makes the formula true?
 - For example:

Can $((x_1 \Rightarrow x_2) \lor \neg ((\neg x_1 \Leftrightarrow x_3) \lor x_4)) \land \neg x_2$ be satisfied?

- Last time we discussed what seems to be a easier problem 3SAT: Given a formula in 3-CNF, is it satisfiable?
 - A formula is in 3-CNF (conjunctive normal form) if it consists of an AND of 'clauses' each of which is the OR of 3 'literals' (a variable or the negation of a variable)
 - Example: $(x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$
- We prove that 3SAT is in NPC, that is, that it is as hard as general SAT.
 - $-3SAT \in NP$
 - SAT $\leq_P 3$ SAT

(we showed how to transform general formula into 3-CNF in polynomial time.)

3 CLIQUE

- NP-complete problems arise in many domains
 - Many important graph problems are in NPC.
- CLIQUE: Given a graph G = (V, E) decide if there is a subset $V' \subset V$ of size k such that there is an edge between every pair of vertices in V'
 - Decision version of problem of finding maximal clique.

Example (clique of size 4):

- We could of course solve CLIQUE by testing each of the ((^{|V|}_k)) ways of choosing subset of size k.
 - but would take exponential time for $k = \Theta(|V|)$
- CLIQUE is indeed hard:

Theorem: $CLIQUE \in NPC$

Proof:

- CLIQUE $\in NP$: Given a subset V' we can easily check in polynomial time that |V'| = kand that V' is a clique.
- − 3SAT \leq_P CLIQUE (somewhat surprising since formulas seem to have little to do with graphs):
 - * We construct a graph G = (V, E) from a k clause formula $\phi = C_1 \wedge C_2 \wedge C_3 \cdots \wedge C_k$ in 3-CNF:

For each clause $C_r = (l_1^r \vee l_2^r \vee l_3^r)$ we place triple of vertices v_1^r, v_2^r, v_3^r in V. Vertices v_i^r and v_j^s are connected if

- a) $r \neq s$
- b) l_i^r and l_i^s are consistent (not negations of each other)

Example: $\phi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$

* Graph can be constructed in polynomial time.

* We have ϕ satisfiable \Leftrightarrow G has clique of size k:

(Example: ϕ satisfiable by $x_1 = 0, x_2 = 0, x_3 = 1$ and set of white vertices is a clique of size 3.)

 \Rightarrow :

- · Each clause C_r contains at least one literal l_i^r assigned 1
- $\cdot\,$ Each such literal corresponds to vertex $v^r_i;$ pick such a vertex in each clause $\Rightarrow k$ vertices V'
- · For any two vertices $v^r_i,v^s_j\in V'\;(r\neq s)$ both corresponding literals l^r_i and l^s_i are mapped to 1
 - \Rightarrow they are not complements
 - \Rightarrow edge in G between v_i^r and v_j^s

 $\Rightarrow V'$ clique.

⇐:

- · Let V' be clique of size $k \Rightarrow V'$ contains exactly one vertex for each triple (no edges between vertices in triple)
- · We can assign 1 to each literal l^r_i corresponding to $v^r_i \in V$ since G contains no edges between inconsistent literals
- · Each clause is satisfiable $\Rightarrow \phi$ satisfiable.

4 Examples of other problems in NPC

- As mentioned a lot of problems have been proved to be in *NPC* (and thus we believe them to be hard)
- One example is VERTEX-COVER: Given a graph G = (V, E) decide if there is a set $V' \subset V$ of size k, such that for each edge $e = (u, v) \in E$, $u \in V'$ or $v \in V'$ (or both).

– Decision version of finding minimal vertex cover.

- We can prove VERTEX-COVER $\in NP$ and CLIQUE \leq_P VERTEX-COVER which means that VERTEX-COVER $\in NPC$.
- We can also prove that $VERTEX-COVER \leq_P HAM-CYCLE$ and we have already discussed that $HAM-CYCLE \leq_P TSP$, which means that both HAM-CYCLE and TSP are NP-complete.
- We can illustrate our *NPC* proofs using the following "reduction-graph":

- As mentioned *many* more problems have been shown *NP*-complete.

- Even though many important problems are *NP*-complete, it doesn't mean that we have given up on solving them. Often we are able to solve interesting instances because e.g.
 - they are small (exponential time algorithms work)
 - they are special (solvable in polynomial time)
 - we can find *near optimal* solutions (many so-called *approximation algorithms* have been developed for NPC problems in recent years. For example, its very easy to design algorithm that computes a vertex cover for a graph of size at most twice the minimal cover).