
CPS 130 Homework 11-15
Hashing, red-black trees, augmented search trees, dynamic programming

Write and justify your answers in the space provided.1

Hashing

1. (CLRS 11.1-4) We wish to implement a dictionary by using direct addressing on a huge
array. At the start, the array entries may contain garbage, and initializing the entire array
is impractical because of its size. Describe a scheme for implementing a direct-address
dictionary on a huge array. Each stored object should use O(1) space; the operations
SEARCH, INSERT and DELETE should take O(1) time each; and the initialization of
the data structure should take O(1) time.

(Hint: Use an additional stack, whose size is the number of keys actually stored in the
dictionary, to help determine whether a given entry in the huge array is valid or not.)

1Collaboration is allowed, even encouraged, provided that the names of the collaborators are listed along
with the solutions. Students must write up the solutions on their own.

Red-Black Trees

2. (CLRS 13.1-5) Show that the longest simple path from a node x in a red-black tree to a
descendant leaf has length at most twice that of the shortest simple path from node x to
a descendant leaf

3. (CLRS 13.1-6) What is the largest possible number of internal nodes in a red-black tree
with black-height k? What is the smallest possible number?

2

4. (CLRS 13-2) The join operation takes two dynamic sets S1 and S2 and an element x such
that for any x1 ∈ S1 and x2 ∈ S2, we have key[x1] ≤ key[x] ≤ key[x2]. It returns a set
S = S1 ∪ {x} ∪ S2. In this problem, we investigate how to implement the join operation
on red-black trees.

(a) Given a red-black tree T , we store its black-height as the field bh[T]. Argue that this
field can be maintained by RB-Insert and RB-Delete without requiring extra
storage in the tree and without increasing the asymptotic running times. Show while
descending through T , we can determine the black-height of each node we visit in
O(1) time per node visited.

We wish to implement the operation RB-Join(T1, x, T2) which destroys T1 and T2

and returns a red-black tree T = T1 ∪ {x} ∪ T2. Let n be the total number of nodes
in T1 and T2.

(b) Assume without loss of generality that bh[T1] ≥ bh[T2]. Describe an O(lg n) time
algorithm that finds a black node y in T1 with the largest key from among those
nodes whose black-height is bh[T2].

(c) Let Ty be the subtree rooted at y. Describe how Ty can be replaced by Ty ∪{x}∪T2

in O(1) time without destroying the binary-search-tree property.

(d) What color should we make x so that red-black properties 1, 2, and 4 are maintained?
Describe how property 3 can be enforced in O(lg n) time.

(e) Argue that the running time of RB-Join is O(lg n)

3

4

Augmented Search Trees

5. (CLRS 14.1-5) Given an element x in an n-node order-statistic tree and a natural num-
ber i, how can the ith successor of x in the linear order of the tree be determined in
O(log n) time?

5

6. In this problem we consider a data structure for maintaining a multi-set M . We want to
support the following operations:

• Init(M): create an empty data structure M .

• Insert(M, i): insert (one copy of) i in M .

• Remove(M, i): remove (one copy of) i from M .

• Frequency(M, i): return the number of copies of i in M .

• Select(M, k): return the k’th element in the sorted order of elements in M .

If for example M consists of the elements
< 0, 3, 3, 4, 4, 7, 8, 8, 8, 9, 11, 11, 11, 11, 13 >

then Frequency(M, 4) will return 2 and Select(M, 6) will return 7.

Let |M | and ‖M‖ denote the number of elements and the number of different elements
in M , respectively.
a) Describe an implementation of the data structure such that Init(M) takes O(1) time
and all other operations take O(log ‖M‖) time.

b) Design an algorithm for sorting a list L in O(|L| log ‖L‖) time using this data structure.

6

7

Dynamic Programming

7. A game-board consists of a row of n fields, each consisting of two numbers. The first
number can be any positive integer, while the second is 1, 2, or 3. An example of a board
with n = 6 could be the following:

17 2 100 87 33 14

1 2 3 1 1 1

The object of the game is to jump from the first to the last field in the row. The top
number of a field is the cost of visiting that field. The bottom number is the maximal
number of fields one is allowed to jump to the right from the field. The cost of a game is
the sum of the costs of the visited fields.

Let the board be represented in a two-dimensional array B[n, 2]. The following recursive
procedure (when called with argument 1) computes the cost of the cheapest game:

Cheap(i)

IF i>n THEN return 0

x=B[i,1]+Cheap(i+1)

y=B[i,1]+Cheap(i+2)

z=B[i,1]+Cheap(i+3)

IF B[i,2]=1 THEN return x

IF B[i,2]=2 THEN return min(x,y)

IF B[i,2]=3 THEN return min(x,y,z)

END Cheap

(a) Analyze the asymptotic running time of the procedure.

8

(b) Describe and analyze a more efficient algorithm for finding the cheapest game.

9

8. In this problem we consider the 0-1 knapsack problem: Given n items, with item
i being worth v[i] dollars and having weight w[i] pounds, fill a knapsack of capacity m
pounds with the maximal possible value.

Example: Given a knapsack of capacity 50, the maximal value obtainable
with three items of value $60, $100, and $120 and weights 10, 20, and 30,
respectively, is $220.

20 20

30

$120

30

10

= $220

$60 $100 Optimal solution

The algorithm Knapsack(i,j) below returns the maximal value obtainable when filling a
knapsack of capacity j using items among items 1 through i (Knapsack(n,m) solves our
problem). The algorithm works by recursively computing the best solution obtainable
with the last item and the best solution obtainable without the last item, and returning
the best of them.

Knapsack(i,j)

IF w[i] <= j THEN

with = v[i] + Knapsack(i-1, j-w[i])

ELSE

with = 0

END IF

without = Knapsack(i-1,j)

RETURN max{with, without}

END Knapsack

(a) Show that the running time T of Knapsack(n, m) is exponential in n or m. (Hint:
look at the case where w[i] = 1 for all 1 ≤ i ≤ n and show that T (n, m) =
Ω(2min(m,n))).

10

(b) Describe an O(n · m) algorithm for computing the value of the optimal solution.

11

