csci 210: Data Structures

Graph Traversals
Depth-first search (DFS)

- G can be directed or undirected

DFS(v)
- mark v visited
- for all adjacent edges (v,w) of v do
 - if w is not visited
 - parent(w) = v
 - (v,w) is a discovery (tree) edge
 - DFS(w)
 - else (v,w) is a non-discovery (non-tree) edge
DFS

- Assume G is undirected (similar properties hold when G is directed).

- DFS(v) visits all vertices in the connected component of v

- The discovery edges form a tree: the DFS-tree of v
 - justification: never visit a vertex again \Rightarrow no cycles
 - we can keep track of the DFS tree by storing, for each vertex w, its parent

- The non-discovery (non-tree) edges always lead to a parent

- If G is given as an adjacency-list of edges, then DFS(v) takes $O(|V|+|E|)$ time.
DFS

Putting it all together:

Proposition: Let \(G=(V,E) \) be an undirected graph represented by its adjacency-list. A DFS traversal of \(G \) can be performed in \(O(|V|+|E|) \) time and can be used to solve the following problems:

- testing whether \(G \) is connected
- computing the connected components (CC) of \(G \)
- computing a spanning tree of the CC of \(v \)
- computing a path between 2 vertices, if one exists
- computing a cycle, or reporting that there are no cycles in \(G \)
Breadth-first search (BFS)

- BFS(v)
- Main idea:
 - start at v and visit first all vertices at distance = 1
 - followed by all vertices at distance = 2
 - followed by all vertices at distance = 3
 - ...
- BFS corresponds to computing the shortest path (in terms of number of edges) from v to all other vertices
 - we'll justify this later
- To perform BFS we think about coloring each vertex
 - WHITE before we start
 - GRAY after we visit a vertex but before we visited all its adjacent vertices
 - BLACK after we visit a vertex and all its adjacent vertices
- We use a queue to store all GRAY vertices---these are the vertices we have seen but we are not done with
- We remember from which vertex a given vertex w is colored GRAY ---- this is the vertex tat discovered w, or the parent of w
BFS

BFSinitialize:

- for each v in V
 - color(v) = WHITE
 - d[v] = infinity
 - parent(v) = NULL

BFS(v)

- color(v) = GRAY
- d[v] = 0
- create an empty queue Q
- Q.enqueue(v)
- while Q not empty
 - Q.dequeue(u)
 - for all adjacent edges (u,w) of e in E do
 - if color(w) = WHITE
 » color(w) = GRAY
 » d[w] = d[u] + 1
 » parent(w) = u
 » Q.enqueue(w)
 - color(u) = BLACK
BFS

- We can classify edges as
 - discovery (tree) edges: edges used to discover new vertices
 - non-discovery (non-tree) edges: lead to already visited vertices
- The distance \(d(u) \) corresponds to its “level”
- For each vertex \(u \), \(d(u) \) represents the shortest path from \(v \) to \(u \)
 - justification: by contradiction. If \(d[u]=k \), assume there exists a shorter path from \(v \) to \(u \).
- Assume \(G \) is undirected (similar properties hold when \(G \) is directed).
 - connected components are defined undirected graphs (note: on directed graphs: strong connectivity)
- As for DFS, the discovery edges form a tree, the BFS-tree
- \(\text{BFS}(v) \) visits all vertices in the connected component of \(v \)
- If \((u,w) \) is a non-tree edges, then \(d(u) \) and \(d(w) \) differ by at most 1.
- If \(G \) is given by its adjacency-list, \(\text{BFS}(v) \) takes \(O(|V|+|E|) \) time.
Putting it all together:

Proposition: Let $G=(V,E)$ be an undirected graph represented by its adjacency-list. A BFS traversal of G can be performed in $O(|V|+|E|)$ time and can be used to solve the following problems:

- testing whether G is connected
- computing the connected components (CC) of G
- computing a spanning tree of the CC of v
- computing a path between 2 vertices, if one exists
- computing a cycle, or reporting that there are no cycles in G
- computing the shortest paths from v to all vertices in the CC of v
Graphs

- Reading: textbook chapter 13 --- only 13.1-13.3
 - 13.1: a good general introduction to graphs
 - 13.2 data structures for graphs
 - 13.3: BFS and DFS

- If you want to know more, take Algorithms or AI
 - offered every fall
Summary

- Fundamental data structures
 - vectors, lists, queues, stacks, trees, maps, priority queues
- Abstract data structures (ADT)
 - the general interface
 - Queue ADT, Stack ADT, Map ADT, Graph ADT, tree ADT
- Implementations of standard ADT
 - use arrays, lists, trees, hashing
- Trees
 - binary search trees
- Priority queues
 - heap
- Graphs
 - basic concepts
 - traversals
- Efficiency
Logistics

- Tomorrow: final project demos

- Final exam: Wednesday May 13th 2-5pm
 - in-class exam
 - meet in the classroom (Seales 126)
 - written part + programming part

- Office hours:
 - tentative: pending scheduling honors presentations. If conflict, I will email new times
 - Monday May 11: 2-4pm
 - Tuesday May 11: 2-4pm