csci 210: Data Structures

Recursion
Summary

• Topics
 • recursion overview
 • simple examples
 • Sierpinski gasket
 • counting blobs in a grid
 • Hanoi towers

• READING:
 • GT textbook chapter 3.5
• A method of defining a function in terms of its own definition

• Example: the Fibonacci numbers
 • \(f(n) = f(n-1) + f(n-2) \)
 • \(f(0) = f(1) = 1 \)

• In programming recursion is a method call to the same method. In other words, a recursive method is one that calls itself.

• Why write a method that calls itself?

• Recursion is a good problem solving approach
 • solve a problem by reducing the problem to smaller subproblems; this results in recursive calls.

• Recursive algorithms are elegant, simple to understand and prove correct, easy to implement
 • But! Recursive calls can result in an infinite loop of calls
 • recursion needs a base-case in order to stop

• Recursion (repetitive structure) can be found in nature
 • shells, leaves
Recursive algorithms

- To solve a problem recursively
 - break into smaller problems
 - solve sub-problems recursively
 - assemble sub-solutions

Problem solving technique: Divide-and-Conquer

```c
recursive-algorithm(input) {
    // base-case
    if (isSmallEnough(input))
        compute the solution and return it
    else
        // recursive case
        break input into simpler instances input1, input2,...
        solution1 = recursive-algorithm(input1)
        solution2 = recursive-algorithm(input2)
        ...
        figure out solution to this problem from solution1, solution2,...
        return solution
}
```
Example

- Write a function that computes the sum of numbers from 1 to n
 int sum (int n)

 1. use a loop
 2. recursively
Example

- Write a function that computes the sum of numbers from 1 to n

```c
int sum (int n)
```

1. use a loop
2. recursively

```c
//with a loop
int sum (int n) {
    int s = 0;
    for (int i=0; i<n; i++)
        s += i;
    return s;
}
```

```c
//recursively
int sum (int n) {
    int s;
    if (n == 0) return 0;
    //else
    s = n + sum(n-1);
    return s;
}
```

How does it work?
sum(10)

return 10 + 45

sum(9)

return 9 + 36

sum(8)

return 8 + 28

sum(1)

return 1 + 0

sum(0)

return 0
Recursion

- How it works
 - Recursion is no different than a function call
 - The system keeps track of the sequence of method calls that have been started but not finished yet (active calls)
 - order matters

- Recursion pitfalls
 - miss base-case
 - infinite recursion, stack overflow
 - no convergence
 - solve recursively a problem that is not simpler than the original one
Perspective

- Recursion leads to solutions that are
 - compact
 - simple
 - easy-to-understand
 - easy-to-prove-correct

- Recursion emphasizes thinking about a problem at a high level of abstraction

- Recursion has an overhead (keep track of all active frames). Modern compilers can often optimize the code and eliminate recursion.
- First rule of code optimization:
 - Don’t optimize it..yet.
- Unless you write super-duper optimized code, recursion is good

- Mastering recursion is essential to understanding computation.
Class-work: Sierpinski gasket

- Fill in the code to create this pattern
Problem: you have a 2-dimensional grid of cells, each of which may be filled or empty. Filled cells that are connected form a “blob” (for lack of a better word).

Write a recursive method that returns the size of the blob containing a specified cell \((i,j)\).

Example

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

BlobCount\((0,3)\) = 3
BlobCount\((0,4)\) = 3
BlobCount\((3,4)\) = 1
BlobCount\((4,0)\) = 7

Solution?

- essentially you need to check the current cell, its neighbors, the neighbors of its neighbors, and so on
- think RECURSIVELY
Blob check

- when calling BlobCheck(i,j)
 - (i,j) may be outside of grid
 - (i,j) may be EMPTY
 - (i,j) may be FILLED

- When you write a recursive method, always start from the base case
 - What are the base cases for counting the blob?
 - given a call to BlobCheck(i,j): when is there no need for recursion, and the function can return the answer immediately?

- Base cases
 - (i,j) is outside grid
 - (i,j) is EMPTY
blobCheck(i,j): if (i,j) is FILLED
• 1 (for the current cell)
• + count its 8 neighbors

//first check base cases
if (outsideGrid(i,j)) return 0;
if (grid[i][j] != FILLED) return 0;
blobc = 1
for (l = -1; l <= 1; l++)
 for (k = -1; k <= 1; k++)
 //skip of middle cell
 if (l==0 && k==0) continue;
 //count neighbors that are FILLED
 if (grid[i+l][j+k] == FILLED) blobc++;

• Does not work: it does not count the neighbors of the neighbors, and their neighbors, and so on.
• Instead of adding +1 for each neighbor that is filled, need to count its blob recursively.
blobCheck(i,j): if (i,j) is FILLED
 • 1 (for the current cell)
 • + count blobs of its 8 neighbors

 // first check base cases
 if (outsideGrid(i,j)) return 0;
 if (grid[i][j] != FILLED) return 0;
 blobc = 1
 for (l = -1; l <= 1; l++)
 for (k = -1; k <= 1; k++)
 // skip of middle cell
 if (l==0 && k==0) continue;
 blobc += blobCheck(i+k, j+l);

• Example: blobCheck(1,1)
 • blobCount(1,1) calls blobCount(0,2)
 • blobCount(0,2) calls blobCount(1,1)

• Does it work?
 • Problem: infinite recursion. Why? multiple counting of the same cell
Marking your steps

- Idea: once you count a cell, mark it so that it is not counted again by its neighbors.

```
blobCheck(1,1)
```

- count it and mark it

```
blobc=1
then find counts of neighbors, recursively
+ blobCheck(0,0)
+ blobCheck(0,1)
+ blobCheck(0,2)
...```
Correctness

• blobCheck(i,j) works correctly if the cell (i,j) is not filled
• if cell (i, j) is FILLED
  • mark the cell
  • the blob of this cell is 1 + blobCheck of all neighbors
  • because the cell is marked, the neighbors will not see it as FILLED
  • ==> a cell is counted only once

• Why does this stop?
  • blobCheck(i,j) will generate recursive calls to neighbors
  • recursive calls are generated only if the cell is FILLED
  • when a cell is marked, it is NOT FILLED anymore, so the size of the blob of filled cells is one smaller
  • ==> the blob when calling blobCheck(neighbor of i,j) is smaller that blobCheck(i,j)

• Note: after one call to blobCheck(i,j) the blob of (i,j) is all marked
  • need to do one pass and restore the grid
Try it out!

- Download blobCheckSkeleton from class website
- Fill in method blobCount(i,j)
Consider the following puzzle

- There are 3 pegs (posts) a, b, c and n disks of different sizes
- Each disk has a hole in the middle so that it can fit on any peg
- At the beginning of the game, all n disks are on peg a, arranged such that the largest is on the bottom, and on top sit the progressively smaller disks, forming a tower
- Goal: find a set of moves to bring all disks on peg c in the same order, that is, largest on bottom, smallest on top
  - constraints
    - the only allowed type of move is to grab one disk from the top of one peg and drop it on another peg
    - a larger disk can never lie above a smaller disk, at any time

The legend says that the world will end when a group of monks, somewhere in a temple, will finish this task with 64 golden disks on 3 diamond pegs. Not known when they started.
Find the set of moves for $n=3$
Solving the problem for any n

• Problem: move n disks from A to C using B
• Think recursively.
• Can you express the problem in terms of a smaller problem?
  • Subproblem: move n-1 disks from X to Y using Z
Solving the problem for any $n$

- Problem: move $n$ disks from A to C using B
- Think recursively.
- Can you express the problem in terms of a smaller problem?
  - Subproblem: move $n-1$ disks from X to Y using Z

Recursive formulation of Towers of Hanoi: move $n$ disks from A to C using B
- move top $n-1$ disks from A to B
- move bottom disks from A to C
- move $n-1$ disks from B to C using A

Correctness
- How would you go about proving that this is correct?
• Look over the skeleton of the Java program to solve the Towers of Hanoi
• It’s supposed to ask you for n and then display the set of moves
  • no graphics

• finn in the gaps in the method
  
  public void move(sourcePeg, storagePeg, destinationPeg)
Correctness

- Proving recursive solutions correct is done with mathematical induction
- Induction: a technique of proving that some statement is true for any \( n \) (natural number)
  - known from ancient times (the Greeks)
- Induction proof:
  - Base case: prove that the statement is true for some small value of \( n \), usually \( n=1 \)
  - The induction step: assume that the statement is true for all integers \( \leq n-1 \). Then prove that this implies that it is true for \( n \).
- Exercise: try proving by induction that \( 1 + 2 + 3 + \ldots + n = n (n+1)/2 \)

- Proof sketch for Towers of Hanoi:
  - Base case: It works correctly for moving one disk.
  - Assume it works correctly for moving \( n-1 \) disks. Then we need to argue that it works correctly for moving \( n \) disks.

- A recursive solution is similar to an inductive proof; just that instead of “inducting” from values smaller than \( n \) to \( n \), we “reduce” from \( n \) to values smaller than \( n \) (think \( n = \) input size)
  - the base case is crucial: mathematically, induction does not hold without it; when programming, the lack of a base-case causes an infinite recursion loop
• How close is the end of the world? Let’s estimate running time.

• The running time of recursive algorithms is estimated using recurrent functions.
• Let T(n) be the time to compute the sequence of moves to move n disks from one peg to another.
• We have
  • T(n) = 2T(n-1) + 1, for any n > 1
  • T(1) = 1 (the base case)

• The recurrence solves to T(n) = O(2^n)  [Csci 231]
  • It can be shown by induction that T(n) = 2^n - 1  [Math 200, Csci 231]
• This means, the running time is exponential in n
  • slow...

• Exercise:
  • 1GHz processor, n = 64 => 2^{64} \times 10^{-9} = .... a log time; hundreds of years