csci 210: Data Structures

Program Analysis
Summary

- analysis of algorithms
- asymptotic analysis
 - big-O
 - big-Omega
 - big-theta
- asymptotic notation
- commonly used functions
- discrete math refresher

READING:
- GT textbook chapter 4
Analysis of algorithms

• Analysis of algorithms and data structure is the major force that drives the design of solutions.
 • there are many solutions to a problem
 • pick the one that is the most efficient
 • how to compare various algorithms? Analyze algorithms.

Algorithm analysis: analyze the cost of the algorithm

• cost = time: How much time does this algorithm require?
• The primary efficiency measure for an algorithm is time
 • all concepts that we discuss for time analysis apply also to space analysis
• cost = space: How much space (i.e. memory) does this algorithm require?
• cost = space + time
• etc

Running time of an algorithm

• increases with input size
• on inputs of same size, can vary from input to input
 • e.g.: linear search an un-ordered array
• depends on hardware
 • CPU speed, hard-disk, caches, bus, etc
• depends on OS, language, compiler, etc
Analysis of algorithms

- Everything else being equal
 - we’d like to compare between algorithms
 - we’d like to study the relationship running time vs. size of input

- How to measure running time of an algorithm?
 - 1. experimental studies
 - 2. theoretical analysis

- Experimental analysis
 - implement
 - chose various input sizes
 - for each input size, chose various inputs
 - run algorithm
 - time
 - compute average
 - plot
Experimental analysis

- Limitations
 - need to implement the algorithm
 - need to implement all algorithms that we want to compare
 - need many experiments
 - try several platforms

- Advantages
 - find the best algorithm in practice

- We would like to analyze algorithms without having to implement them
- Basically, we would like to be able to look at two algorithms flowcharts and decide which one is better
Theoretical analysis

- **Model:** RAM model of computation
 - Assume all operations cost the same
 - Assume all data fits in memory

- **Running time (efficiency) of an algorithm:**
 - the number of operations executed by the algorithm

- **Does this reflect actual running time?**
 - multiply nb. of instructions by processor speed
 - 1GHz processor ==> 10^9 instructions/second

- **Is this accurate?**
 - Not all instructions take the same...
 - various other effects.
 - Overall, it is a very good predictor of running time in most cases.
Notations

- Notation:
 - $n =$ size of the input to the problem

- Running time:
 - number of operations/instructions on an input of size n
 - expressed as function of n: $f(n)$

- For an input of size n, running time may be smaller on some inputs than on others

- Best case running time:
 - the smallest number of operations on an input of size n

- Worst-case running time:
 - the largest number of operations on an input of size n

- For any n
 - best-case running time$(n) \leq$ running time$(n) \leq$ worst-case running time (n)

- Ideally, want to compute average-case running time
 - hard to model
Running times

- Expressed as functions of n: f(n)
- The most common functions for running times are the following:

 - constant time:
 - f(n) = c

 - logarithmic time
 - f(n) = \log n

 - linear time
 - f(n) = n

 - \(n \log n \)
 - f(n) = n \log n

 - quadratic
 - f(n) = n^2

 - cubic
 - f(n) = n^3

 - exponential
 - f(n) = a^n
Constant time

- $f(n) = c$
 - Meaning: for any n, $f(n)$ is a constant c

- Elementary operations
 - arithmetic operations
 - boolean operations
 - assignment statement
 - function call
 - access to an array element $a[i]$
 - etc
Logarithmic time

- $f(n) = \lg_c n$

- **logarithm definition:**
 - $x = \log_c n$ if and only if $c^x = n$
 - by definition, $\log_c 1 = 0$

- In algorithm analysis we use the ceiling to round up to an integer
 - the ceiling of x (the smallest integer $\geq x$)
 - e.g. $\text{ceil}(\log_b n)$ is the number of times you can divide n by b until we get a number ≤ 1
 - e.g.
 - $\text{ceil}(\log_2 8) = 3$
 - $\text{ceil}(\log_2 10) = 4$

- **Notation:** $\lg n = \log_2 n$

- Refresher: Logarithm rules
Exercises

Simplify these expressions

- \(\lg 2n = \)
- \(\lg (n/2) = \)
- \(\lg n^3 = \)
- \(\lg 2^n \)
- \(\log_4 n = \)
- \(2^{\lg n} \)
Binary search

- Searching a sorted array

```java
//return the index where key is found in a, or -1 if not found
public static int binarySearch(int[] a, int key) {
    int left = 0;
    int right = a.length-1;
    while (left <= right) {
        int mid = left + (right-left)/2;
        if (key < a[mid]) right = mid-1;
        else if (key > a[mid]) left = mid+1;
        else return mid;
    }
    //not found
    return -1;
}
```

- running time:
 - best case: constant
 - worst-case: \(\log n \)

Why? input size halves at every iteration of the loop
Linear running time

- \(f(n) = n \)

- Example:
 - doing one pass through an array of \(n \) elements
 - e.g.
 - finding min/max/average in an array
 - computing sum in an array
 - search an un-ordered array (worst-case)

```java
int sum = 0
for (int i=0; i< a.length; i++)
    sum += a[i]
```
n-lg-n running time

- \(f(n) = n \lg n \)
- grows faster than \(n \) (i.e. it is slower than \(n \))
- grows slower than \(n^2 \)

Examples
- performing \(n \) binary searches in an ordered array
- sorting
Quadratic time

- $f(n) = n^2$
- appears in nested loops
- enumerating all pairs of n elements

Example 1:
```c
for (i=0; i<n; i++)
    for (j=0; j<n; j++)
        //do something
```

Example 2:
```c
//selection sort:
for (i=0; i<n; i++)
    minIndex = index-of-smallest element in a[i..n-1]
    swap a[i] with a[minIndex]
```

- **running time:**
 - index-of-smallest element in $a[i..j]$ takes $j-i+1$ operations
 - $n + (n-1) + (n-2) + (n-3) + ... + 3 + 2 + 1$
 - this is n^2
Math refresher

- **Lemma:**

 - $1 + 2 + 3 + 4 + \ldots + (n-2) + (n-1) + n = \frac{n(n+1)}{2}$ (arithmetic sum)

- **Proof:**
Cubic running times

- Cubic running time: \(f(n) = n^3 \)
- In general, a polynomial running time is: \(f(n) = n^d, \ d>0 \)
- Examples:
 - nested loops
 - Enumerate all triples of elements
 - Imagine cities on a map. Are there 3 cities that no two are not joined by a road?
 - Solution: enumerate all subsets of 3 cities. There are \(n \) chose 3 different subsets, which is order \(n^3 \).
Exponential running time

- Exponential running time: \(f(n) = an \), \(a > 1 \)

- Examples:
 - Running time of Tower of Hanoi (see later)
 - Moving \(n \) disks from A to B requires at least \(2n \) moves; which means it requires at least this much time

- Math refresher: exponent rules:
Comparing Growth-Rates

1 \leq \log n < n < n \log n < n^2 < n^3 < a^n
Asymptotic analysis

- Focus on the growth of rate of the running time, as a function of n
- That is, ignore the constant factors and the lower-order terms
- Focus on the big-picture
- Example: we’ll say that $2n$, $3n$, $5n$, $100n$, $3n+10$, $n + \log n$, are all linear

Why?
- constants are not accurate anyways
- operations are not equal
- capture the dominant part of the running time

Notations:
- Big-Oh:
 - express upper-bounds
- Big-Omega:
 - express lower-bounds
- Big-Theta:
 - express tight bounds (upper and lower bounds)
Big-Oh

- Definition: $f(n)$ is $O(g(n))$ if there exists $c > 0$ such that $f(n) \leq c \cdot g(n)$ for all $n \geq n_0$.

- Intuition:
 - Big-Oh represents an upper bound.
 - When we say f is $O(g)$ this means that:
 - $f \leq g$ asymptotically.
 - g is an upper bound for f.
 - f stays below g as n goes to infinity.

- Examples:
 - $2n$ is $O(n)$
 - $100n$ is $O(n)$
 - $10n + 50$ is $O(n)$
 - $3n + \log n$ is $O(n)$
 - $\log n$ is $O(\log_{10} n)$
 - $\log_{10} n$ is $O(\log n)$
 - $5n^4 + 3n^3 + 2n^2 + 7n + 100$ is $O(n^4)$
Big-Oh

- $2n^2 + n \log n + n + 10$
 - is $O(n^2 + n \log n)$
 - is $O(n^3)$
 - is $O(n^4)$
 - is $O(n^2)$

- $3n + 5$
 - is $O(n^{10})$
 - is $O(n^2)$
 - is $O(n + \log n)$

- Let’s say you are 2 minutes away from the top and you don’t know that.

You ask: How much further to the top?
- Answer 1: at most 3 hours (True, but not that helpful)
- Answer 2: just a few minutes.

- When finding an upper bound, find the best one possible.
Exercises

Write Big-Oh upper bounds for each of the following.

- $10n - 2$
- $5n^3 + 2n^2 + 10n + 100$
- $5n^2 + 3n \log n + 2n + 5$
- $20n^3 + 10n \log n + 5$
- $3n \log n + 2$
- $2^{(n+2)}$
- $2n + 100 \log n$
Big-Omega

Definition:
- $f(n)$ is $\Omega(g(n))$ if there exists $c > 0$ such that $f(n) \geq c \cdot g(n)$ for all $n \geq n_0$

Intuition:
- Big-omega represents a lower bound
- When we say f is $\Omega(g)$ this means that
 - $f \geq g$ asymptotically
 - g is a lower bound for f
 - f stays above g as n goes to infinity

Examples:
- $3\ln n + 2n$ is $\Omega(\ln n)$
- $2n + 3$ is $\Omega(n)$
- $4n^2 + 3n + 5$ is $\Omega(n)$
- $4n^2 + 3n + 5$ is $\Omega(n^2)$
Big-Theta

- **Definition:**
 - $f(n)$ is $\Theta(g(n))$ if $f(n)$ is $O(g(n))$ and f is $\Omega(g(n))$
 - i.e. there are constants c' and c'' such that $c' g(n) \leq f(n) \leq c'' g(n)$

- **Intuition:**
 - f and g grow at the same rate, up to constant factors
 - Θ captures the order of growth

- **Examples:**
 - $3n + \lg n + 10$ is $O(n)$ and $\Omega(n)$ \implies is $\Theta(n)$
 - $2n^2 + n \lg n + 5$ is $\Theta(n^2)$
 - $3\lg n + 2$ is $\Theta(\lg n)$
Asymptotic Analysis

- Find tight bounds for the best-case and worst-case running times
- Running time is Omega(best-case running time)
- Running time is O(worst-case running time)

Example:
- binary search is Theta(1) in the best case
- binary search is Theta(lg n) in the worst case
- binary search is Omega(1) and O(lg n)

Usually we are interested the worst-case running time
- a Theta-bound for the worst-case running time

Example:
- worst-case binary search is Theta(lg n)
- worst-case linear search is Theta(n)
- worst-case insertion sort is Theta(n^2)
- worst-case bubble-sort is O(n^2)
- worst-case find-min in an array is Theta(n)

It is correct to say worst-case binary search is O(lg n), but a Theta-bound is better
Suppose we have two algorithms for a problem:
- Algorithm A has a running time of $O(n)$
- Algorithm B has a running time of $O(n^2)$

Which is better?
Asymptotic Analysis

Suppose we have two algorithms for a problem:

- Algorithm A has a running time of \(\Theta(n) \)
- Algorithm B has a running time of \(\Theta(n^2) \)

Which is better?

- Order classes of functions by their order of growth
- \(\Theta(1) < \Theta(lg n) < \Theta(n) < \Theta(n \lg n) < \Theta(n^2) < \Theta(n^3) < \Theta(2^n) \)
- \(\Theta(n) \) is better than \(\Theta(n^2) \)
- etc

- Cannot distinguish between algorithms in the same class
 - Two algorithms that are \(\Theta(n) \) worst-case are equivalent theoretically
 - Optimization of constants can be done at implementation-time
Order of growth matters

- Example:
 - Say n = 10^9 (1 billion elements)
 - 10 MHz computer ==> 1 instruction takes 10^-7 seconds
 - Binary search would take
 - \(\Theta(\lg n) = \lg 10^9 \times 10^{-7} \text{ sec} = 30 \times 10^{-7} \text{ sec} = 3 \text{ microsec} \)
 - Sequential search would take
 - \(\Theta(n) = 10^9 \times 10^{-7} \text{ sec} = 100 \text{ seconds} \)
 - Finding all pairs of elements would take
 - \(\Theta(n^2) = (10^9)^2 \times 10^{-7} \text{ sec} = 10^{11} \text{ seconds} = 3170 \text{ years} \)
 - Imagine \(\Theta(n^3) \)
 - Imagine \(\Theta(2^n) \)
Order of Growth Matters

<table>
<thead>
<tr>
<th>n</th>
<th>(\log n)</th>
<th>n</th>
<th>(n \log n)</th>
<th>(n^2)</th>
<th>(n^3)</th>
<th>(2^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3</td>
<td>8</td>
<td>24</td>
<td>64</td>
<td>512</td>
<td>256</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>16</td>
<td>64</td>
<td>256</td>
<td>4,096</td>
<td>65,536</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>32</td>
<td>160</td>
<td>1,024</td>
<td>32,768</td>
<td>4,294,967,296</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
<td>64</td>
<td>384</td>
<td>4,096</td>
<td>262,144</td>
<td>1.8 x 10^19</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
<td>128</td>
<td>896</td>
<td>16,384</td>
<td>2,097,152</td>
<td>3.40 x 10^38</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
<td>256</td>
<td>2,048</td>
<td>65,536</td>
<td>16,777,216</td>
<td>1.15 x 10^77</td>
</tr>
<tr>
<td>512</td>
<td>9</td>
<td>512</td>
<td>4,608</td>
<td>262,144</td>
<td>134,217,728</td>
<td>1.34 x 10^154</td>
</tr>
<tr>
<td>1024</td>
<td>10</td>
<td>1024</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1024^2)</td>
<td>20</td>
<td>1,048,576</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10^9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assume we have a 1 GHz computer.
This means an instruction takes 1 microsecond (10^-9 seconds).

We have 3 algorithms:

- A: 400n
- B: 2n^2
- C: 2^n

What is the maximum input size that can be solved with each algorithm in:

- 1 second
- 1 minute
- 1 hour

<table>
<thead>
<tr>
<th>Running time (in microseconds)</th>
<th>1 sec</th>
<th>1 min</th>
<th>1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>400n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2n^2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2^n</td>
<td></td>
<td></td>
<td>31</td>
</tr>
</tbody>
</table>
Exercise

- We have an array X containing a sequence of numbers. We want to compute another array A such that $A[i]$ represents the average $X[0] + X[1] + \ldots X[i]/ (i+1)$.
 - $A[0] = X[0]$
 - $A[1] = (X[0] + X[1]) / 2$
 - \ldots

- The first i values of X are referred to as the i-prefix of X. $X[0] + \ldots X[i]$ is called prefix-sum, and $A[i]$ prefix average.

- Application: In Economics. Imagine that $X[i]$ represents the return of a mutual fund in year i. $A[i]$ represents the average return over i years.

- Write a function that creates, computes and returns the prefix averages.

  ```
  double[] computePrefixAverage(double[] X)
  ```

- Analyze your algorithm (worst-case running time).
Asymptotic Analysis: Overview

- Running time = number of instructions
 - RAM model of computation

- Want the worst-case running time as a function of input size
 - the largest number of instructions on an input of size n

- Find the tight order of growth of the worst-case running time
 - a Theta-bound

- Classification of growth rates
 \[
 \Theta(1) < \Theta(\log n) < \Theta(n) < \Theta(n \log n) < \Theta(n^2) < \Theta(n^3) < \Theta(2^n)
 \]

- At the algorithm design level, we want to find the most efficient algorithm in terms of growth rate
- We can optimize constants at the implementation step