csci 210: Data Structures

Trees

# Summary

### Topics

- general trees, definitions and properties
- interface and implementation
- tree traversal algorithms
  - depth and height
  - pre-order traversal
  - post-order traversal
- binary trees
  - properties
  - interface
  - implementation
- binary search trees
  - definition
  - h-n relationship
  - search, insert, delete
  - performance

### READING:

• GT textbook chapter 7 and 10.1

- So far we have seen linear structures
  - linear: before and after relationship
  - lists, vectors, arrays, stacks, queues, etc
- Non-linear structure: trees
  - probably the most fundamental structure in computing
  - hierarchical structure
  - Terminology: from family trees (genealogy)



- store elements hierarchically
- the top element: root
- except the root, each element has a parent
- each element has 0 or more children



### Definition

- A tree T is a set of nodes storing elements such that the nodes have a parent-child relationship that satisfies the following
  - if T is not empty, T has a special tree called the root that has no parent
  - each node v of T different than the root has a unique parent node w; each node with parent w is a child of w

### Recursive definition

- T is either empty
- or consists of a node r (the root) and a possibly empty set of trees whose roots are the children of r

### Terminology

- siblings: two nodes that have the same parent are called siblings
- internal nodes
  - nodes that have children
- external nodes or leaves
  - nodes that don't have children
- ancestors
- descendants

# Trees root internal nodes leaves

ancestors of u



descendants of u



# Application of trees

- Applications of trees
  - class hierarchy in Java
  - file system
  - storing hierarchies in organizations

# Tree ADT

| • | Who | atever<br>root() | the ir  | mpleme | ntation | of a | tree | is, it | s inte | rface | is | the | follo | wing |
|---|-----|------------------|---------|--------|---------|------|------|--------|--------|-------|----|-----|-------|------|
|   | •   | size()           |         |        |         |      |      |        |        |       |    |     |       |      |
|   | •   | isEmpt           | y()     |        |         |      |      |        |        |       |    |     |       |      |
|   | •   | parent           | (v)     |        |         |      |      |        |        |       |    |     |       |      |
|   | •   | childre          | en(v)   |        |         |      |      |        |        |       |    |     |       |      |
|   | •   | isInter          | nal(v)  |        |         |      |      |        |        |       |    |     |       |      |
|   | •   | isExte           | ^nal(v) |        |         |      |      |        |        |       |    |     |       |      |
|   |     |                  |         |        |         |      |      |        |        |       |    |     |       |      |

• isRoot()

# Tree Implementation

```
class Tree {
    TreeNode root;
    //tree ADT methods..
class TreeNode<Type> {
    Type data;
    int size;
    TreeNode parent;
    TreeNode firstChild;
    TreeNode nextSibling;
    getParent();
    getChild();
    getNextSibling();
```



# Algorithms on trees: Depth

### Depth:

depth(T, v) is the number of ancestors of v, excluding v itself

### Recursive formulation

- if v == root, then depth(v) = 0
- else, depth(v) is 1 + depth (parent(v))
- Compute the depth of a node v in tree T: int depth(T, v)
- Algorithm:

```
int depth(T,v) {
    if T.isRoot(v) return 0
    return 1 + depth(T, T.parent(v))
}
```

### Analysis:

- O(number of ancestors) = O(depth\_v)
- in the worst case the path is a linked-list and v is the leaf
- ==> O(n), where n is the number of nodes in the tree

# Algorithms on trees: Height

### Height:

height of a node v in T is the length of the longest path from v to any leaf

### Recursive formulation:

- if v is leaf, then its height is 0
- else height(v) = 1 + maximum height of a child of v
- Definition: the height of a tree is the height of its root
- Compute the height of tree T: int height(T,v)

- Height and depth are "symmetrical"
- Proposition: the height of a tree T is the maximum depth of one of its leaves.

# Height

### Algorithm:

```
int height(T,v) {
    if T.isExternal(v) return 0;
    int h = 0;
    for each child w of v in T do
        h = max(h, height(T, w))
    return h+1;
}
```

### Analysis:

- total time: the sum of times spent at all nodes in all recursive calls
- the recursion:
  - v calls height(w) recursively on all children w of v
  - height() will eventually be called on every descendant of v
  - overall: height() is called on each node precisely once, because each node has one parent
- aside from recursion
  - for each node v: go through all children of v
    - O(1 + c\_v) where c\_v is the number of children of v
  - over all nodes: O(n) + SUM (c\_v)
    - each node is child of only one node, so its processed once as a child
    - $SUM(c_v) = n 1$
- total: O(n), where n is the number of nodes in the tree

### Tree traversals

A traversal is a systematic way to visit all nodes of T.

```
pre-order: root, children
 • parent comes before children; overall root first
post-order: children, root
    parent comes after children; overall root last
void preorder(T, v)
    visit v
    for each child w of v in T do
         preorder(w)
void postorder(T, v)
    for each child w of v in T do
         postorder(w)
    visit v
```

Analysis: O(n) [same arguments as before]

# Examples

Tree associated with a document



In what order do you read the document?

# Example

Tree associated with an arithmetical expression



Write method that evaluates the expression. In what order do you traverse the tree?

# Binary trees

# Binary trees

### Definition: A binary tree is a tree such that

- every node has at most 2 children
- each node is labeled as being either a left chilld or a right child

### Recursive definition:

- a binary tree is empty;
- or it consists of
  - a node (the root) that stores an element
  - a binary tree, called the left subtree of T
  - a binary tree, called the right subtree of T

### Binary tree interface

- left(v)
- right(v)
- hasLeft(v)
- hasRight(v)
- + isInternal(v), is External(v), isRoot(v), size(), isEmpty()

# Properties of binary trees

### In a binary tree

- level 0 has <= 1 node</li>
- level 1 has <= 2 nodes</li>
- level 2 has <= 4 nodes</li>
- ..
- level i has <= 2<sup>i</sup> nodes



Proposition: Let T be a binary tree with n nodes and height h. Then

- h+1 <= n <= 2 h+1 -1
- lg(n+1) 1 <= h <= n-1

# Binary tree implementation

- use a linked-list structure; each node points to its left and right children; the tree class stores the root node and the size of the tree
- implement the following functions:
  - left(v)
  - right(v)
  - hasLeft(v)
  - hasRight(v)
  - isInternal(v)
  - is External(v)
  - isRoot(v)
  - size()
  - isEmpty()
  - also
    - insertLeft(v,e)
    - insertRight(v,e)
    - remove(e)
    - addRoot(e)



# Binary tree operations

### insertLeft(v,e):

- create and return a new node w storing element e, add w as the left child of v
- an error occurs if v already has a left child

### insertRight(v,e)

### remove(v):

- remove node v, replace it with its child, if any, and return the element stored at v
- an error occurs if v has 2 children

### addRoot(e):

- create and return a new node r storing element e and make r the root of the tree;
- an error occurs if the tree is not empty

### attach(v,T1, T2):

- attach T1 and T2 respectively as the left and right subtrees of the external node v
- an error occurs if v is not external

# Performance

### all O(1)

- left(v)
- right(v)
- hasLeft(v)
- hasRight(v)
- isInternal(v)
- is External(v)
- isRoot(v)
- size()
- isEmpty()
- addRoot(e)
- insertLeft(v,e)
- insertRight(v,e)
- remove(e)

# Binary tree traversals

- Binary tree computations often involve traversals
  - pre-order: root left right
  - post-order: left right root
- additional traversal for binary trees
  - in-order: left root right
    - visit the nodes from left to right
- Exercise:
  - write methods to implement each traversal on binary trees

# Application: Tree drawing

- Come up with a solution to "draw" a binary tree in the following way. Essentially, we need to assign coordinate x and y to each node.
  - node v in the tree
    - $\bullet \quad \mathsf{x}(\mathsf{v}) \ = \ ?$
    - y(v) = ?



# Application: Tree drawing

- We can use an in-order traversal and assign coordinate x and y of each node in the following way:
  - x(v) is the number of nodes visited before v in the in-order traversal of v
  - y(v) is the depth of v



# Binary tree searching

### write search(v, k)

- search for element k in the subtree rooted at v
- return the node that contains k
- return null if not found

### performance

• 3

# Binary Search Trees (BST)

### Motivation:

- want a structure that can search fast
- arrays: search fast, updates slow
- linked lists: search slow, updates fast

### Intuition:

tree combines the advantages of arrays and linked lists

### Definition:

a BST is a binary tree with the following "search" property



# BST

Example





# Sorting a BST

Print the elements in the BST in sorted order



# Sorting a BST

Print the elements in the BST in sorted order.



- in-order traversal: left -node-right
- Analysis: O(n)

```
//print the elements in tree of v in order
sort(BSTNode v)
   if (v == null) return;
   sort(v.left());
   print v.getData();
   sort(v.right());
```

# Searching in a BST



# Searching in a BST

```
//return the node w such that w.getData() == k or null if such a node
//does not exist
BSTNode search (v, k)
    if (v == null) return null;
    if (v.getData() == k) return v;
    if (k < v.getData()) return search(v.left(), k);</pre>
    else return search(v.right(), k)
                                    33
```

### Analysis:

- search traverses (only) a path down from the root
- does NOT traverse the entire tree
- $O(depth \ of \ result \ node) = O(h)$ , where h is the height of the tree

# Inserting in a BST

### insert 25



# Inserting in a BST

- insert 25
  - There is only one place where 25 can go



```
//create and insert node with key k in the property of the series of the control 
void insert (v, k)
                           //this can only happen if inserting in an empty tree
                           if (v == null) return new BSTNode(k);
                           if (k <= v.getData()) {</pre>
                                                               if (v.left() == null) {
                                                                                       //insert node as left child of v
                                                                                      u = new BSTNode(k);
                                                                                      v.setLeft(u);
                                                         } else {
                                                                                  return insert(v.left(), k);
                             } else //if (v.getData() > k) {
```

# Inserting in a BST

### Analysis:

- similar with searching
- traverses a path from the root to the inserted node
- O(depth of inserted node)
- this is O(h), where h is the height of the tree

# Deleting in a BST

- delete 87
- delete 21
- delete 90



- case 1: delete a
  - if x is left of its parent, set parent(x).left = null
  - else set parent(x).right = null
- case 2: delete a node with one child
  - link parent(x) to the child of x
- case 2: delete a node with 2 children
  - ??

# Deleting in a BST

delete 90



- copy in u 94 and delete 94
  - the left-most child of right(x)
- or
- copy in u 87 and delete 87
  - the right-most child of left(x)

node has <=1 child

# Deleting in a BST

### Analysis:

- traverses a path from the root to the deleted node
- and sometimes from the deleted node to its left-most child
- this is O(h), where h is the height of the tree

# BST performance

- Because of search property, all operations follow one root-leaf path
  - insert: O(h)
  - delete: O(h)
  - search: O(h)

- We know that in a tree of n nodes
  - h >= lg (n+1) 1
  - h <= n−1</li>
- So in the worst case h is O(n)
  - BST insert, search, delete: O(n)
  - just like linked lists/arrays



# BST performance

### worst-case scenario

- start with an empty tree
- insert 1
- insert 2
- insert 3
- insert 4
- ...
- insert n

### it is possible to maintain that the height of the tree is Theta(lg n) at all times

- by adding additional constraints
- perform rotations during insert and delete to maintain these constraints

### Balanced BSTs: h is Theta(lg n)

- Red-Black trees
- AVL trees
- 2-3-4 trees
- B-trees
- to find out more.... take csci231 (Algorithms)