Final Review

1. REVIEW TOPICS

 —Recursion
 —divide-and-conquer and backtracking
 —Linked lists
 —Functionality. WHY lists? difference with vectors/arrays
 —analysis for insert, delete, search
 —when/why doubly-linked lists; circular lists
 —Stacks and queues
 —operations and functionality
 —implementation with vectors and lists
 —analysis in each case
 —searching with stacks and queues: breadth-first search and depth-first search
 —The general skeleton of exhaustive search using a stack or a queue to keep track of the states to explore
 —Trees and binary search trees
 —computing height, level, size
 —complete binary tree; number of nodes at each level, height
 —traversals: BFS, DFS, in-order, post-order, pre-order
 —operations: search, insert, delete, min, max, successor, predecessor
 —Priority queues and the binary heap
 —operations supported by a priority queue, and difference to a DICTIONARY
 —general idea of insert and extract-min
 —analysis
 —Sorting
 —general idea of approaches (insertion sort, selection sort, bubble sort, merge sort, sort with a priority queue)
 —Maps and hashing
 —concept and operation supported by a map
 —hashing and collisions with chaining, open addressing
 —load factor and performance
 —what is expected of a good hash function

2. COURSE OUTCOMES

 After this class you should know the fundamental algorithms and data structures and be able to debug your code. More precisely,

 —Know the fundamental data structures (arrays, vectors, lists, stacks, queues, trees, binary search trees, heaps, maps, hash tables) and basic algorithmic techniques (recursion; divide-and-conquer; backtracking, breadth- and depth-first search)
Final Review

— Analyse the asymptotic performance of fundamental data structures and decide which structure is better in what circumstances
— Be able to use the structures as black-boxes in your problem
— Be able to implement the details of a data structure
— Be familiar with the general ideas for sorting (insertion sort, selection sort, bubble sort, merge-sort)
— Know the major ways to implement searching (linear search, binary search, binary search trees, hashing)
— Be able to implement your code in Java, search the Java doc files, debug and get it to work.