1. INHERITANCE AND DYNAMIC TYPE-CASTING

Java performs automatic type conversion from a sub-type to a super-type. That is, if a method requires a parameter of type A, we can call the method with a parameter that is a sub-class of A. Basically this says that any class that inherits from A can be used in place of type A.

One way you will see this is when writing, say, a class that is supposed to handle an array of objects— but we don’t know what the type of the objects will be. So we declare the data as:

```java
class Vector {
    Object[] myArray;
    ...

    //insert x in the array
    void insert(Object x) {...}
}
```

Then we can use Vector to hold any objects.

```java
Vector v = new Vector();
v.insert('snow');
v.insert('cold');
```

2. METHODS INHERITED FROM JAVA CLASS OBJECT

2.1 toString()

This is a method that returns the string representation of the object its called on. It is defined in class Object and therefore inherited by all objects.

For example,

```java
class Point {
    private int x, y;

    public Point(int x, int y) {
        this.x = x;
        this.y = y;
    }
    public int getX() {
        return x;
    }
    public int getY() {
        return y;
    }
}
```
Java Basics

public class ToStringDemo {
 public static void main(String args[]) {
 Point p = new Point(10, 10);

 // using the Default Object.toString() Method
 System.out.println("Object toString() method : "+p);

 // implicitly call toString()
 String s = p + " testing";
 System.out.println(s);
 }
}

Try playing with this.
If you want more useful information about an object (for e.g. helpful in debugging) you’ll have to override the toString method:

public void toString() {
 System.out.println("x=\" + x + ", y=\" + y);
}

2.2 equals vs. ==
You have seen == on integers, and other primitive types. You can also use == on objects. There is a difference though: on objects == determines whether two objects refer to the same object. That is, == compares reference, not values.

SomeClass x, y, z;

x = new SomeClass();
y = x;
//then x==y will return true

z = a copy of x
//then x==z will return false, even though the values are equal

What if we want to check whether the two objects have the same fields? Any class has a (default) equals() method that is inherited from class Object. The default version of equals() checks for equality of reference, just like ==.

Usually you are not interested whether the two objects refer to the same object, but rather, whether two objects are equal—i.e. their fields are equal. If you want to check data equality, you need to implement (override) .

This has been done for example on class String. The equals method on class String checks for data equality. For example,

String s = "Bowdoin";
if (s.equals("bowdoin"))

will return true.
3. STATIC VARIABLES AND METHODS

When a number of objects are created from the same class, they each have their own distinct copies of instance variables, stored in different memory locations.

A class can have variables that are declared static. These variables are associated with the class, not with the instances of the class (i.e. the objects).

The static variables are common to the class and are shared by all instances of the class. Any object can change the value of a class variable; class variables can also be manipulated without creating an instance of the class.

A static variable is accessed as `<class-name>.<variable-name>`.

Example: a BankAccount class can keep a static variable for the number of accounts open. Every call to a constructor would increment this variable.

A common use of static variables is to define "constants". Examples from the Java library are `Math.PI` or `Color.RED`.

A method can also be declared static. Then it is associated with the class, and not with an object. From inside a class it is called by its name, just like a non-static method. From outside the class it is called on the class `<class-name>.<method-name>(<arguments>)`.

You may ask: when to declare a method static? When it performs a function specific to the class, not to a specific object.

```java
public class Math {
    ...
    //returns true if n is prime
    public static boolean isPrime(int n) {
        ...
    }
}
```

To find whether a number is prime, you don’t need to create a specific object. From outside the class, call `Math.isPrime(645)`.

A common use for static methods is to access static variables.

The functions in `Math` are all static: `Math.sin(x)`, `Math.cos(x)`, `Math.exp(d)`, `math.pow(d1, d2)`.

Note: static methods cannot access instance variables (there is no instance), and cannot access `this` (there is no instance for this to refer to).

4. SCOPE

Types of variables in Java:

(1) instance variables (non-static)
(2) class variables (static variables)
(3) local variables
(4) parameters

Variables must be declared within a class (instance variables or global variables) or a method (local variables).

An instance variable is visible/accessible to all methods of that class. If it is public, it is also visible outside the class.
A local variable is visible only inside the method; in the code following its declaration, within the tightest enclosing .

The parameters of a method are visible (only) inside the method and do not need to be re-declared inside.

4.1 this

Used to refer to an instance variable that clashes with a parameter:

class A {
 private int age;

 public void setAge(int age) {
 this.age = age;
 }
}

4.2 Example

public class ScopeTester {

 //instance variable
 private int x = 1;

 public void test1 (int x) {
 //a parameter shadows an instance variable
 System.out.println("x = " + x);
 x = 10;
 System.out.println("x = " + x);
 System.out.println("this.x = " + this.x);
 }

 public void test2() {
 //you can redeclare an instance variable
 double x = 10.3;
 System.out.println("x= " + x);
 System.out.println("this.x= " + this.x);
 }

 public void print() {
 System.out.println("x= " + x);
 }

 public boolean equals (ScopeTester s) {
 return (x == s.x);
 }

 public static void main (String args[]) {
 ScopeTester s = new ScopeTester();

}
int a = 100;
System.out.println("before test1: a = " + a);
s.test1(a);
//a is changed in test1(), but not visible outside
System.out.println("after test1: a = " + a);
s.test2();
s.print();

ScopeTester x, y;
x = new ScopeTester();
y = new ScopeTester();
if (x==y) System.out.println("same object");
else System.out.println("NOT same object");
if (x.equals(y)) System.out.println("equal");
else System.out.println("not equal");

System.out.println("this is the default toString(): " + x);

5. PROGRAMMING WITH ASSERTIONS
A good programming practice in any language is to use assertions in the code to enforce invariants.

For example, if at some point in a method we know that a variable say x must be non-zero, we write:

assert (x != 0);

When the code is executed, if x is non-zero, the assertion succeeds. Otherwise, if x is zero, the assertions fails, and the program terminates with an error.

In order to enable assertion you have to compile with the flag -ea:

javac -ea xxx.java

Assertions don’t have any effect on the code as such, they are just used to make sure that certain conditions are true. It is good pratice and style to include assertions in your code. They help you catch errors earlier.

6. TESTING AND DEBUGGING
If your program compiles, that does not mean it is correct. It can still have bugs... that is, logical errors. You will find that you will spend most of your time debugging your code. There is no recipe on how to debug — just plenty of print statements, and/or use BlueJ.

To find all possible bugs, you need to test your program on different inputs, and take into account all situations that may appear.

csci210: Data Structures Spring 2008.