csci 210: Data Structures

Graph Traversals
Graph traversal (BFS and DFS)

- G can be undirected or directed
- We think about coloring each vertex
 - WHITE before we start
 - GRAY after we visit a vertex but before we visited all its adjacent vertices
 - BLACK after we visit a vertex and all its adjacent vertices

- We store all GRAY vertices---these are the vertices we have seen but we are not done with

- Depending on the structure (queue or list), we get BFS or DFS

- We remember from which vertex a given vertex w is colored GRAY ---- this is the vertex that discovered w, or the parent of w
BFS

- G can be undirected or directed
- Initialize:
 - for each v in V
 - color(v) = WHITE
 - parent(v) = NULL

Traverse(v)
- color(v) = GRAY
- create an empty set S
- insert v in S
- while S not empty
 - delete node u from S
 - for all adjacent edges (u, w) of e in E do
 - if color(w) = WHITE
 - color(w) = GRAY
 - parent(w) = u
 - insert w in S
 - color(u) = BLACK
Breadth-first search (BFS)

- How it works:

- BFS(v)
 - start at v and visit first all vertices at distance =1
 - followed by all vertices at distance=2
 - followed by all vertices at distance=3
 - ...

- BFS corresponds to computing the shortest path (in terms of number of edges) from v to all other vertices
BFS

- G can be undirected or directed
- BFS-initialize:
 - for each v in V
 - color(v) = WHITE
 - d[v] = infinity
 - parent(v) = NULL

BFS(v)
- color(v) = GRAY
- d[v] = 0
- create an empty queue Q
- Q.enqueue(v)
- while Q not empty
 - Q.dequeue(u)
 - for all adjacent edges (u,w) of e in E do
 - if color(w) = WHITE
 » color(w) = GRAY
 » d[w] = d[u] + 1
 » parent(w) = u
 » Q.enqueue(w)
 - color(u) = BLACK
BFS

- We can classify edges as
 - discovery (tree) edges: edges used to discover new vertices
 - non-discovery (non-tree) edges: lead to already visited vertices
- The distance $d(u)$ corresponds to its “level”
- For each vertex u, $d(u)$ represents the shortest path from v to u
 - justification: by contradiction. If $d[u]=k$, assume there exists a shorter path from v to u.
- Assume G is undirected (similar properties hold when G is directed).
 - connected components are defined undirected graphs (note: on directed graphs: strong connectivity)
- As for DFS, the discovery edges form a tree, the BFS-tree
- BFS(v) visits all vertices in the connected component of v
- If (u,w) is a non-tree edges, then $d(u)$ and $d(w)$ differ by at most 1.
- If G is given by its adjacency-list, BFS(v) takes $O(|V|+|E|)$ time.
BFS

Putting it all together:

Proposition: Let $G=(V,E)$ be an undirected graph represented by its adjacency-list. A BFS traversal of G can be performed in $O(|V|+|E|)$ time and can be used to solve the following problems:

- testing whether G is connected
- computing the connected components (CC) of G
- computing a spanning tree of the CC of v
- computing a path between 2 vertices, if one exists
- computing a cycle, or reporting that there are no cycles in G
- computing the shortest paths from v to all vertices in the CC of v
Depth-first search (DFS)

- G can be directed or undirected
- use Traverse(v) with S = stack
- or recursively

DFS(v)
 - mark v visited
 - for all adjacent edges (v,w) of v do
 - if w is not visited
 - parent(w) = v
 - (v,w) is a discovery (tree) edge
 - DFS(w)
 - else (v,w) is a non-discovery (non-tree) edge
\begin{itemize}
 \item Assume \(G\) is undirected (similar properties hold when \(G\) is directed).
 \item DFS(\(v\)) visits all vertices in the connected component of \(v\).
 \item The discovery edges form a tree: the DFS-tree of \(v\).
 \begin{itemize}
 \item justification: never visit a vertex again\(\Rightarrow\) no cycles
 \item we can keep track of the DFS tree by storing, for each vertex \(w\), its parent
 \end{itemize}
 \item The non-discovery (non-tree) edges always lead to a parent.
 \item If \(G\) is given as an adjacency-list of edges, then DFS(\(v\)) takes \(O(|V|+|E|)\) time.
\end{itemize}
Putting it all together:

Proposition: Let $G=(V,E)$ be an undirected graph represented by its adjacency-list. A DFS traversal of G can be performed in $O(|V|+|E|)$ time and can be used to solve the following problems:

- testing whether G is connected
- computing the connected components (CC) of G
- computing a spanning tree of the CC of v
- computing a path between 2 vertices, if one exists
- computing a cycle, or reporting that there are no cycles in G