csci 210: Data Structures

Trees
Summary

Topics

- general trees, definitions and properties
- interface and implementation
- tree traversal algorithms
 - depth and height
 - pre-order traversal
 - post-order traversal
- binary trees
 - properties
 - interface
 - implementation

- binary search trees
 - definition
 - h-n relationship
 - search, insert, delete
 - performance

READING:

- LC textbook chapter on Trees and Binary Search Trees
So far we have seen linear structures
- linear: before and after relationship
- lists, vectors, arrays, stacks, queues, etc

Non-linear structure: trees
- probably the most fundamental structure in computing
- hierarchical structure
- Terminology: from family trees (genealogy)
- store elements hierarchically
- the top element: root
- except the root, each element has a parent
- each element has 0 or more children
• **Trees**

Definition
- A tree T is a set of nodes storing elements such that the nodes have a parent-child relationship that satisfies the following:
 - if T is not empty, T has a special tree called the root that has no parent
 - each node v of T different than the root has a unique parent node w; each node with parent w is a child of w

Recursive definition
- T is either empty
- or consists of a node r (the root) and a possibly empty set of trees whose roots are the children of r

Terminology
- siblings: two nodes that have the same parent are called siblings
- internal nodes: nodes that have children
- external nodes or leaves: nodes that don’t have children
- ancestors
- descendants
Trees

- root
- internal nodes
- leaves
ancestors of u
descendants of u
Application of trees

- Applications of trees
 - class hierarchy in Java
 - file system
 - storing hierarchies in organizations
Whatever the implementation of a tree is, its interface contains the following:

- `root()`
- `size()`
- `isEmpty()`
- `parent(v)`
- `children(v)`
- `isInternal(v)`
- `isExternal(v)`
- `isRoot()`
class Tree {
 TreeNode root;

 // tree ADT methods...
}

class TreeNode<Type> {
 Type data;
 int size;
 TreeNode parent;
 TreeNode firstChild;
 TreeNode nextSibling;

 // TreeNode methods
 getParent();
 getChild();
 getNextSibling();
 ...
}
Given tree implementation above, sketch the implementation for:

- root()
- size()
- isEmpty()
- parent(v)
- children(v)
- isInternal(v)
- isExternal(v)
- isRoot()
Algorithms on trees: Depth

- **Depth:**
 - \(\text{depth}(T, v) \) is the number of ancestors of \(v \) in \(T \), excluding \(v \) itself

- **Recursive formulation**
 - if \(v == \text{root} \), then \(\text{depth}(v) = 0 \)
 - else, \(\text{depth}(v) \) is \(1 + \text{depth}(\text{parent}(v)) \)

- **Sketch how to compute the depth of a node \(v \) in tree \(T \):**

  ```c
  int depth(T, v) {
    if T.isRoot(v) return 0;
    return 1 + depth(T, T.parent(v));
  }
  ```

- **Analysis:**
 - \(O(\text{number of ancestors of } v) = O(\text{depth of } v) \)
 - In the worst case the path is a linked-list and \(v \) is the leaf
 - \(\Rightarrow O(n) \), where \(n \) is the number of nodes in the tree
Algorithms on trees: Height

- **Height:**
 - height of a node \(v \) in \(T \) is the length of the longest path from \(v \) to any leaf in \(T \)

- **Recursive formulation:**
 - if \(v \) is leaf, then its height is 0
 - else \(\text{height}(v) = 1 + \text{maximum height of a child of } v \)

- **Definition:** The height of a tree is the height of its root.

- Height and depth are "symmetrical"

- **Proposition:** the height of a tree \(T \) is the maximum depth of one of its leaves.

- Sketch how to compute the height of tree \(T \): int height(T,v)
Height

- **Algorithm:**
  ```java
  int height(T, v) {
    if T.isExternal(v) return 0;
    int h = 0;
    for each child w of v in T do
      h = max(h, height(T, w))
    return h+1;
  }
  ```

- **Analysis:**
 - **total time:** the sum of times spent at all nodes in all recursive calls
 - **the recursion:**
 - v calls height(w) recursively on all children w of v
 - height() will eventually be called on every descendant of v
 - overall: height() is called on each node precisely once, because each node has one parent
 - **aside from recursion**
 - for each node v: go through all children of v
 - \(O(1 + c_v) \) where \(c_v \) is the number of children of v
 - over all nodes: \(O(n) + \sum (c_v) \)
 - each node is child of only one node, so it's processed precisely once as a child
 - \(\sum(c_v) = n - 1 \)
 - **total:** \(O(n) \), where \(n \) is the number of nodes in the tree
Tree traversals

- A traversal is a systematic way to visit all nodes of T.

- **pre-order:** root, children
 - parent comes before children; overall root first

- **post-order:** children, root
 - parent comes after children; overall root last

```java
void preorder(T, v)
  visit v
  for each child w of v in T do
    preorder(w)

void postorder(T, v)
  for each child w of v in T do
    postorder(w)
  visit v
```

Analysis: $O(n)$ [same arguments as before]
Examples

- Tree associated with a document

Paper

- Title
- Abstract
- Ch1
- Ch2
- Ch3
- Refs

- 1.1
- 1.2
- 3.1
- 3.2

In what order do you read the document?
- Tree associated with an arithmetical expression

```
+ 3
  *
  - 12
  + 5
  1 7
```

- Write a method that evaluates the expression. In what order do you traverse the tree?
Binary trees
Binary trees

Definition: A binary tree is a tree such that
- every node has at most 2 children
- each node is labeled as being either a left child or a right child

Recursive definition:
- a binary tree is empty;
- or it consists of
 - a node (the root) that stores an element
 - a binary tree, called the left subtree of T
 - a binary tree, called the right subtree of T

Binary tree interface
- left(v)
- right(v)
- hasLeft(v)
- hasRight(v)
- isInternal(v), isExternal(v), isRoot(v), size(), isEmpty()
In a binary tree

- level 0 has \(\leq 1 \) node
- level 1 has \(\leq 2 \) nodes
- level 2 has \(\leq 4 \) nodes
- ...
- level \(i \) has \(\leq 2^i \) nodes

Proposition: Let \(T \) be a binary tree with \(n \) nodes and height \(h \). Then

- \(h+1 \leq n \leq 2^{h+1} - 1 \)
- \(\log_2(n+1) - 1 \leq h \leq n-1 \)
Binary tree implementation

- each node points to its left and right children; the tree stores the root node and the size of the tree

- sketch how to implement the following functions:
 - left(v)
 - right(v)
 - hasLeft(v)
 - hasRight(v)
 - isInternal(v)
 - is External(v)
 - isRoot(v)
 - size()
 - isEmpty()
 - next
 - insertLeft(v,e)
 - insertRight(v,e)
 - remove(e)
 - addRoot(e)
Binary tree operations

- **insertLeft**(v,e):
 - create and return a new node w storing element e, add w as the left child of v
 - an error occurs if v already has a left child

- **insertRight**(v,e)
 - similar

- **remove**(v):
 - remove node v, replace it with its child, if any, and return the element stored at v
 - an error occurs if v has 2 children

- **addRoot**(e):
 - create and return a new node r storing element e and make r the root of the tree;
 - an error occurs if the tree is not empty

- **attach**(v,T1, T2):
 - attach T1 and T2 respectively as the left and right subtrees of the external node v
 - an error occurs if v is not external
Performance

- all $O(1)$
 - left(v)
 - right(v)
 - hasLeft(v)
 - hasRight(v)
 - isInternal(v)
 - is External(v)
 - isRoot(v)
 - size()
 - isEmpty()
 - addRoot(e)
 - insertLeft(v,e)
 - insertRight(v,e)
 - remove(e)
Binary tree traversals

- Binary tree computations often involve traversals
 - pre-order: root left right
 - post-order: left right root

- Additional traversal for binary trees
 - in-order: left root right
 - visit the nodes from left to right

- Exercise:
 - write methods to implement each traversal on binary trees
Come up with a solution to “draw” a binary tree in the following way. Essentially, we need to assign coordinate x and y to each node.

- node v in the tree
 - $x(v) = ?$
 - $y(v) = ?$
Application: Tree drawing

- We can use an in-order traversal and assign coordinate x and y of each node in the following way:
 - x(v) is the number of nodes visited before v in the in-order traversal of v
 - y(v) is the depth of v
Binary tree searching

- **write search**(v, k)
 - search for element k in the subtree rooted at v
 - return the node that contains k
 - return null if not found

- performance
 - ?
Binary Search Trees (BST)

- **Motivation:**
 - want a structure that can search fast
 - arrays: search fast, updates slow
 - linked lists: search slow, updates fast

- **Intuition:**
 - tree combines the advantages of arrays and linked lists

- **Definition:**
 - a BST is a binary tree with the following “search” property
 - for any node v
 - all nodes in $T_1 \leq k$
 - all nodes in $T_2 > k$

```
  k
 / \   \\
T_1   T_2
```

allows to search efficiently
• Example
• Print the elements in the BST in sorted order
Sorting a BST

- Print the elements in the BST in sorted order.

- in-order traversal: left - node - right

- Analysis: O(n)

```java
// print the elements in tree of v in order
sort(BSTNode v)
    if (v == null) return;
    sort(v.left());
    print v.getData();
    sort(v.right());
```
Searching in a BST
//return the node w such that w.getData() == k or null if such a node
//does not exist
BSTNode search (v, k) {
 if (v == null) return null;
 if (v.getData() == k) return v;
 if (k < v.getData()) return search(v.left(), k);
 else return search(v.right(), k)
}

- Analysis:
 - search traverses (only) a path down from the root
 - does NOT traverse the entire tree
 - \(O(\text{depth of result node}) = O(h), \) where \(h \) is the height of the tree
Inserting in a BST

- insert 25
Inserting in a BST

- insert 25
 - There is only one place where 25 can go

```
//create and insert node with key k in the tree
void insert(v, k) {
    //this can only happen if inserting in an empty tree
    if (v == null) return new BSTNode(k);
    if (k <= v.getData()) {
        if (v.left() == null) {
            //insert node as left child of v
            u = new BSTNode(k);
            v.setLeft(u);
        } else {
            return insert(v.left(), k);
        }
    } else //if (v.getData() > k) {
        ...}
```
Inserting in a BST

- Analysis:
 - similar with searching
 - traverses a path from the root to the inserted node
 - $O($depth of inserted node$)$
 - this is $O(h)$, where h is the height of the tree
Deleting in a BST

- delete 87
- delete 21
- delete 90

- case 1: delete a leaf x
 - if x is left of its parent, set parent(x).left = null
 - else set parent(x).right = null

- case 2: delete a node with one child
 - link parent(x) to the child of x

- case 2: delete a node with 2 children
 - ??
Deleting in a BST

- delete 90

- copy in u 94 and delete 94
 - the left-most child of right(x)
- or
- copy in u 87 and delete 87
 - the right-most child of left(x)
Deleting in a BST

Analysis:
- traverses a path from the root to the deleted node
- and sometimes from the deleted node to its left-most child
- this is $O(h)$, where h is the height of the tree
Because of search property, all operations follow one root-leaf path

- **insert**: $O(h)$
- **delete**: $O(h)$
- **search**: $O(h)$

We know that in a tree of n nodes

- $h \geq \lg (n+1) - 1$
- $h \leq n-1$

So in the worst case h is $O(n)$

- BST insert, search, delete: $O(n)$
- just like linked lists/arrays
BST performance

- **worst-case scenario**
 - start with an empty tree
 - insert 1
 - insert 2
 - insert 3
 - insert 4
 - ...
 - insert n

- it is possible to maintain that the height of the tree is $\Theta(\lg n)$ at all times
 - by adding additional constraints
 - perform rotations during insert and delete to maintain these constraints

- **Balanced BSTs:** h is $\Theta(\lg n)$
 - Red-Black trees
 - AVL trees
 - 2-3-4 trees
 - B-trees

- to find out more... take csci231 (Algorithms)