Recursion

- A method of defining a function in terms of its own definition
- Example: the Fibonacci numbers
 - \(f(n) = f(n-1) + f(n-2) \)
 - \(f(0) = f(1) = 1 \)
- In programming recursion is a method call to the same method. In other words, a recursive method is one that calls itself.
- Why write a method that calls itself?
- Recursion is a good problem solving approach
 - solve a problem by reducing the problem to smaller subproblems; this results in recursive calls.
- Recursive algorithms are elegant, simple to understand and prove correct, easy to implement
 - But! Recursive calls can result in an infinite loop of calls
 - recursion needs a base-case in order to stop
- Recursion (repetitive structure) can be found in nature
 - shells, leaves

Recursive algorithms

- To solve a problem recursively
 - break into smaller problems
 - solve sub-problems recursively
 - assemble sub-solutions
- Problem solving technique: Divide-and-Conquer

```java
recursive-algorithm(input) {
  //base-case
  if (isSmallEnough(input))
    compute the solution and return it
  else
    //recursive case
    break input into simpler instances input1, input 2,...
    solution1 = recursive-algorithm(input1)
    solution2 = recursive-algorithm(input2)
    ... figure out solution to this problem from solution1, solution2, ...
    return solution
}
```
Example

- Write a function that computes the sum of numbers from 1 to n
 int sum (int n)
 1. use a loop
 2. recursively

// with a loop
int sum (int n) {
 int s = 0;
 for (int i=0; i<n; i++)
 s += i;
 return s;
}

// recursively
int sum (int n) {
 int s;
 if (n == 0) return 0;
 // else
 s = n + sum(n-1);
 return s;
}

How does it work?

Recursion

- How it works
 - Recursion is no different than a function call
 - The system keeps track of the sequence of method calls that have been started but not finished yet (active calls)
 - order matters
- Recursion pitfalls
 - miss base-case
 - infinite recursion, stack overflow
 - no convergence
 - solve recursively a problem that is not simpler than the original one
Perspective

- Recursion leads to solutions that are
 - compact
 - simple
 - easy-to-understand
 - easy-to-prove-correct

- Recursion emphasizes thinking about a problem at a high level of abstraction

- Recursion has an overhead (keep track of all active frames). Modern compilers can often optimize the code and eliminate recursion.

- First rule of code optimization:
 - Don’t optimize it...yet.
 - Unless you write super-duper optimized code, recursion is good

- Mastering recursion is essential to understanding computation.

Recursion examples

- Sierpinski gasket
- Blob counting
- Towers of Hanoi

Sierpinski gasket

- see Sierpinski-skeleton.java
- Fill in the code to create this pattern

Blob check

- Problem: you have a 2-dimensional grid of cells, each of which may be filled or empty. Filled cells that are connected form a “blob” (for lack of a better word).

- Write a recursive method that returns the size of the blob containing a specified cell (i,j)

- Example

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 | BlobCount(0,3) = 3 |
 | BlobCount(0,4) = 3 |
 | BlobCount(3,4) = 1 |
 | BlobCount(4,0) = 7 |

- Solution?
 - essentially you need to check the current cell, its neighbors, the neighbors of its neighbors, and so on
 - think RECURSIVELY
Blob check

- when calling BlobCheck(i,j)
 - (i,j) may be outside of grid
 - (i,j) may be EMPTY
 - (i,j) may be FILLED

- When you write a recursive method, always start from the base case
 - What are the base cases for counting the blob?
 - given a call to BlobCheck(i,j): when is there no need for recursion, and the function can return the answer immediately?

- Base cases
 - (i,j) is outside grid
 - (i,j) is EMPTY

Blob check

- blobCheck(i,j): if (i,j) is FILLED
 - 1 (for the current cell)
 - + count its 8 neighbors

  ```java
  // first check base cases
  if (outsideGrid(i,j)) return 0;
  if (grid[i][j] != FILLED) return 0;
  blobc = 1
  for (l = -1; l <= 1; l++)
    for (k = -1; k <= 1; k++)
      //skip of middle cell
      if (l==0 && k==0) continue;
      //count neighbors that are FILLED
      if (grid[i+l][j+k] == FILLED) blobc++;
  ```

- Does not work: it does not count the neighbors of the neighbors, and their neighbors, and so on.
- Instead of adding +1 for each neighbor that is filled, need to count its blob recursively.

Marking your steps

- Idea: once you count a cell, mark it so that it is not counted again by its neighbors.

  ```java
  blobCheck(1,1)
  count it and mark it
  + blobCheck(0,0)
  + blobCheck(0,1)
  + blobCheck(0,2)
  ... 
  blobc=1
  ```

- Example: blobCheck(1,1)
 - BlobCount(1,1) calls BlobCount(0,2)
 - BlobCount(0,2) calls BlobCount(1,1)

- Does it work?
 - Problem: infinite recursion. Why? multiple counting of the same cell
Correctness

- blobCheck(i,j) works correctly if the cell (i,j) is not filled
- if cell (i,j) is FILLED
 - mark the cell
 - the blob of this cell is 1 + blobCheck of all neighbors
 - because the cell is marked, the neighbors will not see it as FILLED
 - \(\Rightarrow \) a cell is counted only once

- Why does this stop?
 - blobCheck(i,j) will generate recursive calls to neighbors
 - recursive calls are generated only if the cell is FILLED
 - when a cell is marked, it is NOT FILLED anymore, so the size of the blob of filled cells is one smaller
 - \(\Rightarrow \) the blob when calling blobCheck(neighbor of i,j) is smaller than blobCheck(i,j)

- Note: after one call to blobCheck(i,j) the blob of (i,j) is all marked
 - need to do one pass and restore the grid

Towers of Hanoi

- Consider the following puzzle
 - There are 3 pegs (posts) a, b, c and n disks of different sizes
 - Each disk has a hole in the middle so that it can fit on any peg
 - At the beginning of the game, all n disks are on peg a, arranged such that the largest is on the bottom, and on top sit the progressively smaller disks, forming a tower
 - Goal: find a set of moves to bring all disks on peg c in the same order, that is, largest on bottom, smallest on top
 - \(\text{constraints} \)
 - the only allowed type of move is to grab one disk from the top of one peg and drop it on another peg
 - a larger disk can never lie above a smaller disk, at any time
- The legend says that the world will end when a group of monks, somewhere in a temple, will finish this task with 64 golden disks on 3 diamond pegs. Not known when they started.

Try it out!

- Download blobCheckSkeleton.java from class website
- Fill in method blobCount(i,j)

Find the set of moves for n=3

```
\[ \begin{array}{c}
  a \\
  \text{...} \\
  a \\
  b \\
  c \\
\end{array} \]
```
• Problem: move n disks from A to C using B
• Think recursively.
• Can you express the problem in terms of a smaller problem?
 • Subproblem: move $n-1$ disks from X to Y using Z.

Recursive formulation of Towers of Hanoi: move n disks from A to C using B
• move top $n-1$ disks from A to B
• move bottom disks from A to C
• move $n-1$ disks from B to C using A

Correctness
• How would you go about proving that this is correct?

Look over the skeleton of the Java program to solve the Towers of Hanoi
• It’s supposed to ask you for n and then display the set of moves
 • no graphics
 • fill in the gaps in the method
 public void move(sourcePeg, storagePeg, destinationPeg)

Proving recursive solutions correct is done with mathematical induction
• Induction: a technique of proving that some statement is true for any n (natural number)
 • known from ancient times (the Greeks)
• Induction proof:
 • Base case: prove that the statement is true for some small value of n, usually $n=1$
 • The induction step: assume that the statement is true for all integers $< n-1$. Then prove that this implies that it
 is true for n.
• Exercise: try proving by induction that $1 + 2 + 3 + \ldots + n = n(n+1)/2$

Proof sketch for Towers of Hanoi:
• Base case: It works correctly for moving one disk.
• Assume it works correctly for moving $n-1$ disks. Then we need to argue that it works correctly for moving n
 disks.

A recursive solution is similar to an inductive proof, just that instead of “inducting” from values smaller than n to n, we “reduce” from n to values smaller than n (think n = input size)
• the base case is crucial: mathematically, induction does not hold without it; when programming, the lack of a
 base-case causes an infinite recursion loop
• How close is the end of the world? Let’s estimate running time.

• The running time of recursive algorithms is estimated using recurrent functions.
• Let \(T(n) \) be the time to compute the sequence of moves to move \(n \) disks from one peg to another.
• We have
 \[
 T(n) = 2T(n-1) + 1, \text{ for any } n > 1
 \]
 \[
 T(1) = 1 \text{ (the base case)}
 \]

• The recurrence solves to \(T(n) = O(2^n) \) [Csci 231]
 • It can be shown by induction that \(T(n) = 2^n - 1 \) [Math 200, Csci 231]
• This means, the running time is exponential in \(n \)
 • slow...

• Exercise:
 • 1GHz processor, \(n = 64 \Rightarrow 2^{64} \times 10^{10} = \ldots \text{ a log time; hundreds of years} \)