csci 210: Data Structures

Recursion
Summary

• Topics
 • recursion overview
 • simple examples
 • Sierpinski gasket
 • counting blobs in a grid
 • Hanoi towers

• READING:
 • LC textbook chapter 7
Recursion

- A method of defining a function in terms of its own definition
- Example: the Fibonacci numbers
 - \(f(n) = f(n-1) + f(n-2) \)
 - \(f(0) = f(1) = 1 \)

- In programming recursion is a method call to the same method. In other words, a recursive method is one that calls itself.

- Why write a method that calls itself?
- Recursion is a good problem solving approach
 - solve a problem by reducing the problem to smaller subproblems; this results in recursive calls.
- Recursive algorithms are elegant, simple to understand and prove correct, easy to implement
 - But! Recursive calls can result in a infinite loop of calls
 - recursion needs a base-case in order to stop
- Recursion (repetitive structure) can be found in nature
 - shells, leaves
Recursive algorithms

- To solve a problem recursively
 - break into smaller problems
 - solve sub-problems recursively
 - assemble sub-solutions

```java
recursive-algorithm(input) {
    // base-case
    if (isSmallEnough(input))
        compute the solution and return it
    else
        // recursive case
        break input into simpler instances input1, input2,...
        solution1 = recursive-algorithm(input1)
        solution2 = recursive-algorithm(input2)
        ...
        figure out solution to this problem from solution1, solution2,...
        return solution
}
```

Problem solving technique: Divide-and-Conquer
Example

• Write a function that computes the sum of numbers from 1 to n

```c
int sum(int n)
```

1. use a loop
2. recursively
• Write a function that computes the sum of numbers from 1 to n

 int sum (int n)

 1. use a loop
 2. recursively

 //with a loop
 int sum (int n) {
 int s = 0;
 for (int i=0; i<n; i++)
 s+= i;
 return s;
 }

 //recursively
 int sum (int n) {
 int s;
 if (n == 0) return 0;
 //else
 s = n + sum(n-1);
 return s;
 }

 How does it work?
\text{sum}(10) \quad \text{return } 10 + 45

\text{sum}(9) \quad \text{return } 9 + 36

\text{sum}(8) \quad \text{return } 8 + 28

\text{sum}(1) \quad \text{return } 1 + 0

\text{sum}(0) \quad \text{return } 0
Recursion

• How it works
 • Recursion is no different than a function call
 • The system keeps track of the sequence of method calls that have been started but not finished yet (active calls)
 • order matters

• Recursion pitfalls
 • miss base-case
 • infinite recursion, stack overflow
 • no convergence
 • solve recursively a problem that is not simpler than the original one
Perspective

- Recursion leads to solutions that are
 - compact
 - simple
 - easy-to-understand
 - easy-to-prove-correct

- Recursion emphasizes thinking about a problem at a high level of abstraction

- Recursion has an overhead (keep track of all active frames). Modern compilers can often optimize the code and eliminate recursion.

- First rule of code optimization:
 - Don’t optimize it...yet.

- Unless you write super-duper optimized code, recursion is good

- Mastering recursion is essential to understanding computation.
Recursion examples

- Sierpinski gasket
- Blob counting
- Towers of Hanoi
Sierpinski gasket

- see Sierpinski-skeleton.java
- Fill in the code to create this pattern
Problem: you have a 2-dimensional grid of cells, each of which may be filled or empty. Filled cells that are connected form a “blob” (for lack of a better word).

Write a recursive method that returns the size of the blob containing a specified cell (i,j).

Example

```
0 1 2 3 4
0 x x
1 x
2 x x
3 x x x x
4 x x x
```

BlobCount(0,3) = 3
BlobCount(0,4) = 3
BlobCount(3,4) = 1
BlobCount(4,0) = 7

Solution?

- essentially you need to check the current cell, its neighbors, the neighbors of its neighbors, and so on
- think RECURSIVELY
Blob check

- when calling BlobCheck(i,j)
 - (i,j) may be outside of grid
 - (i,j) may be EMPTY
 - (i,j) may be FILLED

- When you write a recursive method, always start from the base case
 - What are the base cases for counting the blob?
 - given a call to BlobCheck(i,j): when is there no need for recursion, and the function can return the answer immediately?

- Base cases
 - (i,j) is outside grid
 - (i,j) is EMPTY
Blob check

- `blobCheck(i, j)`: if (i, j) is FILLED
 - 1 (for the current cell)
 - + count its 8 neighbors

```plaintext
//first check base cases
if (outsideGrid(i, j)) return 0;
if (grid[i][j] != FILLED) return 0;
blobc = 1
for (l = -1; l <= 1; l++)
  for (k = -1; k <= 1; k++)
    //skip of middle cell
    if (l==0 && k==0) continue;
    //count neighbors that are FILLED
    if (grid[i+l][j+k] == FILLED) blobc++;
```

- Does not work: it does not count the neighbors of the neighbors, and their neighbors, and so on.
- Instead of adding +1 for each neighbor that is filled, need to count its blob recursively.
Blob check

- blobCheck(i,j): if (i,j) is FILLED
 - 1 (for the current cell)
 - + count blobs of its 8 neighbors

//first check base cases
if (outsideGrid(i,j)) return 0;
if (grid[i][j] != FILLED) return 0;
blobc = 1
for (l = -1; l <= 1; l++)
 for (k = -1; k <= 1; k++)
 //skip of middle cell
 if (l==0 && k==0) continue;
 blobc += blobCheck(i+k, j+l);

- Example: blobCheck(1,1)
 - blobCount(1,1) calls blobCount(0,2)
 - blobCount(0,2) calls blobCount(1,1)

- Does it work?
 - Problem: infinite recursion. Why? multiple counting of the same cell
Marking your steps

- Idea: once you count a cell, mark it so that it is not counted again by its neighbors.
Correctness

- blobCheck(i,j) works correctly if the cell (i,j) is not filled
- if cell (i, j) is FILLED
 - mark the cell
 - the blob of this cell is 1 + blobCheck of all neighbors
 - because the cell is marked, the neighbors will not see it as FILLED
 - ==> a cell is counted only once

- Why does this stop?
 - blobCheck(i,j) will generate recursive calls to neighbors
 - recursive calls are generated only if the cell is FILLED
 - when a cell is marked, it is NOT FILLED anymore, so the size of the blob of filled cells is one smaller
 - ==> the blob when calling blobCheck(neighbor of i,j) is smaller than blobCheck(i,j)

- Note: after one call to blobCheck(i,j) the blob of (i,j) is all marked
 - need to do one pass and restore the grid
Try it out!

- Download blobCheckSkeleton.java from class website
- Fill in method blobCount(i,j)
Towers of Hanoi

- Consider the following puzzle
 - There are 3 pegs (posts) a, b, c and n disks of different sizes
 - Each disk has a hole in the middle so that it can fit on any peg
 - At the beginning of the game, all n disks are on peg a, arranged such that the largest is on the bottom, and on top sit the progressively smaller disks, forming a tower
 - Goal: find a set of moves to bring all disks on peg c in the same order, that is, largest on bottom, smallest on top
 - constraints
 - the only allowed type of move is to grab one disk from the top of one peg and drop it on another peg
 - a larger disk can never lie above a smaller disk, at any time
 - The legend says that the world will end when a group of monks, somewhere in a temple, will finish this task with 64 golden disks on 3 diamond pegs. Not known when they started.
Find the set of moves for $n=3$
Solving the problem for any n

- Problem: move n disks from A to C using B
- Think recursively.
- Can you express the problem in terms of a smaller problem?
 - Subproblem: move n-1 disks from X to Y using Z
Solving the problem for any n

- Problem: move n disks from A to C using B
- Think recursively.
- Can you express the problem in terms of a smaller problem?
 - Subproblem: move $n-1$ disks from X to Y using Z

- Recursive formulation of Towers of Hanoi: move n disks from A to C using B
 - move top $n-1$ disks from A to B
 - move bottom disks from A to C
 - move $n-1$ disks from B to C using A

- Correctness
 - How would you go about proving that this is correct?
• Look over the skeleton of the Java program to solve the Towers of Hanoi
• It’s supposed to ask you for n and then display the set of moves
 • no graphics

• finn in the gaps in the method

 public void move(sourcePeg, storagePeg, destinationPeg)
Correctness

- Proving recursive solutions correct is done with mathematical induction
- Induction: a technique of proving that some statement is true for any n (natural number)
 - known from ancient times (the Greeks)
- Induction proof:
 - Base case: prove that the statement is true for some small value of n, usually n=1
 - The induction step: assume that the statement is true for all integers \(\leq n-1 \). Then prove that this implies that it is true for n.
- Exercise: try proving by induction that \(1 + 2 + 3 + \ldots + n = n(n+1)/2 \)
- Proof sketch for Towers of Hanoi:
 - Base case: It works correctly for moving one disk.
 - Assume it works correctly for moving n-1 disks. Then we need to argue that it works correctly for moving n disks.
- A recursive solution is similar to an inductive proof; just that instead of “inducting” from values smaller than n to n, we “reduce” from n to values smaller than n (think n = input size)
 - the base case is crucial: mathematically, induction does not hold without it; when programming, the lack of a base-case causes an infinite recursion loop
Analysis

• How close is the end of the world? Let’s estimate running time.

• The running time of recursive algorithms is estimated using recurrent functions.
• Let $T(n)$ be the time to compute the sequence of moves to move n disks from one peg to another.
• We have
 • $T(n) = 2T(n-1) + 1$, for any $n > 1$
 • $T(1) = 1$ (the base case)

• The recurrence solves to $T(n) = O(2^n)$ [Csci 231]
 • It can be shown by induction that $T(n) = 2^n - 1$ [Math 200, Csci 231]
• This means, the running time is exponential in n
 • slow...

• Exercise:
 • 1GHz processor, $n = 64$ \Rightarrow $2^{64} \times 10^{-9} = \ldots$ a log time; hundreds of years