Summary

- Analysis of algorithms
- Asymptotic analysis
 - Big-O
 - Big-Omega
 - Big-Theta
- Asymptotic notation
- Commonly used functions
- Discrete math refresher

Reading:
- Textbook chapter 2 (p. 13-26)

Analysis of algorithms

- Analysis of algorithms and data structure is the major force that drives the design of solutions.
 - There are many solutions to a problem: pick the one that is the most efficient
 - How to compare various algorithms? Analyze algorithms.

- Algorithm analysis: analyze the cost of the algorithm
 - Cost = time: How much time does this algorithm require?
 - The primary efficiency measure for an algorithm is time
 - All concepts that we discuss for time analysis apply also to space analysis
 - Cost = space: How much space (i.e. memory) does this algorithm require?
 - Cost = space + time
 - Etc.

- Running time of an algorithm
 - Increases with input size
 - On inputs of same size, can vary from input to input
 - E.g.: Linear search an un-ordered array
 - Depends on hardware
 - CPU speed, hard-disk, caches, bus, etc
 - Depends on OS, language, compiler, etc

How to measure running time of an algorithm?

- Everything else being equal
 - We'd like to compare algorithms
 - We'd like to study the relationship running time vs. size of input

- Experimental analysis
 - Implement
 - Chose various input sizes
 - For each input size, chose various inputs
 - Run algorithm
 - Time
 - Compute average
 - Plot

- Theoretical analysis
Experimental analysis

- **Limitations**
 - need to implement the algorithm
 - need to implement all algorithms that we want to compare
 - try several platforms

- **Advantages**
 - find the best algorithm in practice

- We would like to analyze algorithms without having to implement them

- Basically, we would like to be able to look at two algorithms flowcharts and decide which one is better

Theoretical analysis

- **RAM model of computation**
 - Assume all operations cost the same
 - Assume all data fits in memory

- **Running time (efficiency) of an algorithm**
 - the number of operations executed by the algorithm

- **Does this reflect actual running time?**
 - multiply nb. of instructions by processor speed
 - 1GHz processor \Rightarrow 10^9 instructions/second

- **Is this accurate?**
 - Not all instructions take the same...
 - Various other effects.
 - Overall, it is a very good predictor of running time in most cases.

Terminology

- **Notation:** $n =$ size of the input to the problem

- **Running time:**
 - number of operations/instructions executed on an input of size n
 - expressed as function of n: $f(n)$

- For an input of size n, running time may be smaller on some inputs than on others

- **Best case running time:**
 - the smallest number of operations on an input of size n

- **Worst-case running time:**
 - the largest number of operations on an input of size n

- **For any n**
 - best-case running time(n) \leq running time(n) \leq worst-case running time (n)

- Ideally, want to compute average-case running time
 - need to know the distribution of the input
 - often assume uniform distribution (all inputs are equally likely), but this may not be realistic

Running time

- **Expressed as functions of n: $f(n)$**

- The most common functions for running times are the following:
 - constant time:
 - $f(n) = c$
 - logarithmic time
 - $f(n) = \log n$
 - linear time
 - $f(n) = n$
 - $n \log n$
 - $f(n) = n \log n$
 - quadratic
 - $f(n) = n^2$
 - cubic
 - $f(n) = n^3$
 - exponential
 - $f(n) = a^n$
Constant running time

- \(f(n) = c \)
 - Meaning: for any \(n \), \(f(n) \) is a constant \(c \)

- Elementary operations
 - arithmetic operations
 - boolean operations
 - assignment statement
 - function call
 - access to an array element \(a[i] \)
 - etc

Logarithmic running time

- \(f(n) = \lg c \)

- Logarithm definition:
 - \(x = \log c n \) if and only of \(c^x = n \)
 - by definition, \(\log c 1 = 0 \)

- In algorithm analysis, we use the ceiling to round up to an integer
 - the ceiling of \(x \): the smallest integer \(\geq x \)
 - e.g. \(\lceil \log_2 8 \rceil = 3 \)
 - \(\lceil \log_2 10 \rceil = 4 \)

- Notation: \(\lg n = \log_2 n \)

- Refresher: Logarithm rules
 - Note: computing \(\lg n \) on your calculator
 - \(\lg n = \log_{10} n / \log_{10} 2 \)

Exercises

Simplify these expressions

- \(\lg 2n = \)
- \(\lg (n/2) = \)
- \(\lg n^3 = \)
- \(\lg 2^n = \)
- \(\log_c n = \)
- \(2^{\lg n} = \)

Binary search

```java
//return the index where key is found in a, or -1 if not found
public static int binarySearch(int[] a, int key) {
    int left = 0;
    int right = a.length-1;
    while (left <= right) {
        int mid = left + (right-left)/2;
        if (key < a[mid]) right = mid-1;
        else if (key > a[mid]) left = mid+1;
        else return mid;
    }
    //not found
    return -1;
}
```

- running time:
 - best case: constant
 - worst-case: \(\lg n \)

Why? input size halves at every iteration of the loop
Linear running time

- \(f(n) = n \)

- **Example:**
 - doing one pass through an array of \(n \) elements
 - e.g., finding min/max/average in an array
 - computing sum in an array
 - search an unordered array (worst-case)

```java
int sum = 0;
for (int i=0; i < a.length; i++)
    sum += a[i];
```

n-log-n running time

- \(f(n) = n \log n \)
- grows faster than \(n \) (i.e., it is slower than \(n^2 \))
- grows slower than \(n^2 \)

- **Examples**
 - performing \(n \) binary searches in an ordered array
 - sorting

Quadratic time

- \(f(n) = n^2 \)
- appears in nested loops
- enumerating all pairs of \(n \) elements

- **Example 1:**
  ```java
  for (i=0; i < n; i++)
      for (j=0; j < n; j++)
          // do something
  ```

- **Example 2:**
  ```java
  // selection sort:
  for (i=0; i < n-1; i++)
      minIndex = index-of-smallest element in a[i..n-1]
      swap a[i] with a[minIndex]
  ```

- **running time:**
 - index-of-smallest element in \(a[i..j] \) takes \(j-i+1 \) operations
 - \(n + (n-1) + (n-2) + \ldots + 3 + 2 + 1 = n(n+1)/2 \) (arithmetic sum)

Math refresher

- **Lemma:**
 - \(1 + 2 + 3 + 4 + \ldots + (n-2) + (n-1) + n = n(n+1)/2 \) (arithmetic sum)

- **Proof:**
Cubic running times

- Cubic running time: \(f(n) = n^3 \)

- Examples:
 - nested loops
 - Enumerate all triples of elements
 - Imagine cities on a map. Are there 3 cities that no two are not joined by a road?
 - Solution: enumerate all subsets of 3 cities. There are \(n \choose 3 \) different subsets, which is \(O(n^3) \).

- In general, a polynomial running time: \(f(n) = n^d \), \(d > 0 \)

Exponential running time

- Exponential running time: \(f(n) = a^n \), \(a > 1 \)

- Examples:
 - running time of Tower of Hanoi (see later)
 - moving \(n \) disks from A to B requires at least \(2^n \) moves, which means it requires at least this much time

- Math refresher: exponent rules

Asymptotic analysis

- Focus on the growth rate of the running time, as a function of \(n \)
- That is, ignore the constant factors and the lower-order terms
- Focus on the big-picture
- Example: we'll say that \(2n, 3n, 5n, 100n, 3n+10, n + \log n \) are all linear

- Why?
 - constants are not accurate anyways
 - operations are not equal
 - capture the dominant part of the running time

- Notations:
 - Big-Oh:
 - \(f(n) \) is \(O(g(n)) \) if exists \(c > 0 \) such that \(f(n) \leq cg(n) \) for all \(n \geq n_0 \)
 - Big-Omega:
 - \(f(n) \) is \(\Omega(g(n)) \) if exists \(c > 0 \) such that \(f(n) \geq cg(n) \) for all \(n \geq n_0 \)
 - Big-Theta:
 - \(f(n) \) is \(\Theta(g(n)) \) if \(f(n) \) is both \(O(g(n)) \) and \(\Omega(g(n)) \)

- Definition: \(f(n) \) is \(O(g(n)) \) if exists \(c > 0 \) such that \(f(n) \leq cg(n) \) for all \(n \geq n_0 \)

- Intuition:
 - Big-oh represents an upper bound
 - when we say \(f \) is \(O(g) \) this means that \(f \leq g \) asymptotically
 - \(g \) is an upper bound for \(f \)
 - \(f \) stays below \(g \) as \(n \) goes to infinity

- Examples:
 - \(2n \) is \(O(n) \)
 - \(100n \) is \(O(n) \)
 - \(10n + 50 \) is \(O(n) \)
 - \(3n + \log n \) is \(O(n) \)
 - \(\log n \) is \(O(\log \log n) \)
 - \(\log_{10} n \) is \(O(\log n) \)
 - \(5n^4 + 3n^3 + 2n^2 + 7n + 100 \) is \(O(n^4) \)
Big-Oh

- $2n^2 + n \lg n + n + 10$
 - is $O(n^2 + n \lg n)$
 - is $O(n^2)$
 - is $O(n^2)$
 - is $O(n^2)$
- $3n + 5$
 - is $O(n^2)$
 - is $O(n^2)$
 - is $O(n^2)$

Let's say you are 2 minutes away from the top and you don't know that. You ask: How much further to the top?

- Answer 1: at most 3 hours (True, but not that helpful)
- Answer 2: just a few minutes.

When finding an upper bound, the goal is to find the best one possible.

Exercises

Using the definition, show the following:

- $100n$ is $O(n)$
- n is $O(100n)$
- $15n + 7$ is $O(n)$
- $15n + 7$ is $O(n^2)$
- $5n + 4$ is $O(2n + 3)$
- $4n^2 + 9n + 8$ is $O(n^2)$

Write Big-Oh upper bounds for each of the following.

- $10n - 2$
- $5n^2 + 2n^2 + 10n + 100$
- $5n^2 + 3n \lg n + 2n + 5$
- $20n^2 + 10n \lg n + 5$
- $3n \lg n + 2$
- $2^{n^2} + n^3 + 20$
- $2n + 100 \lg n$

Big-Omega

Definition:

- $f(n)$ is $\Omega(g(n))$ if there exists $c > 0$ such that $f(n) \geq cg(n)$ for all $n \geq n_0$

Intuition:

- big-omega represents a lower bound
- when we say f is $\Omega(g)$ this means that $f \gg g$ asymptotically
- g is a lower bound for f
- f stays above g as n goes to infinity

Examples:

- $3n \lg n + 2n$ is $\Omega(n \lg n)$
- $2n + 3$ is $\Omega(n)$
- $4n^2 + 3n + 5$ is $\Omega(n)$
- $4n^2 + 3n + 5$ is $\Omega(n^2)$

O() and Omega() are symmetrical:

- $f(n)$ is $g(n) \iff g(n)$ is $\Omega(f(n))$
Big-Theta

- **Definition:**
 - \(f(n) \) is \(\Theta(g(n)) \) if \(f(n) \) is \(O(g(n)) \) and \(f(n) \) is \(\Omega(g(n)) \)
 - i.e. there are constants \(c' \) and \(c'' \) such that \(c'g(n) \leq f(n) \leq c''g(n) \)

- **Intuition:**
 - \(f \) and \(g \) grow at the same rate, up to constant factors
 - \(\Theta \) captures the order of growth

- **Examples:**
 - \(3n + \lg n + 10 \) is \(O(n) \) and \(\Omega(n) \) \(\implies \) \(\Theta(n) \)
 - \(2n^2 + n \lg n + 5 \) is \(\Theta(n^2) \)
 - \(3\lg n + 2 \) is \(\Theta(\lg n) \)

Asymptotic Analysis

- Find tight bounds for the best-case and worst-case running times
- Running time is \(\Omega(best-case \ running \ time) \)
- Running time is \(O(worst-case \ running \ time) \)

- **Example:**
 - binary search is \(\Theta(\lg n) \) in the best case
 - binary search is \(\Theta(n) \) in the worst case
 - binary search is \(\Omega(\lg n) \) and \(O(n) \)

- Usually we are interested the worst-case running time
 - a \(\Theta \)-bound for the worst-case running time

- **Example:**
 - worst-case binary search is \(\Theta(\lg n) \)
 - worst-case linear search is \(\Theta(n) \)
 - worst-case insertion sort is \(\Theta(n^2) \)
 - worst-case bubble-sort is \(O(n^2) \)
 - worst-case find-min in an array is \(\Theta(n) \)
 - It is correct to say worst-case binary search is \(O(\lg n) \), but a \(\Theta \)-bound is better

Asymptotic Analysis

- Suppose we have two algorithms for a problem:
 - Algorithm A has a running time of \(O(n) \)
 - Algorithm B has a running time of \(O(n^2) \)

- Which is better?

Asymptotic Analysis

- Suppose we have two algorithms for a problem:
 - Algorithm A has a running time of \(\Theta(n) \)
 - Algorithm B has a running time of \(\Theta(n^2) \)

- Which is better?
 - order classes of functions by their order of growth
 - \(\Theta() < \Theta(\lg n) < \Theta(n) < \Theta(n\lg n) < \Theta(n^2) < \Theta(n^3) < \Theta(2^n) \)
 - \(\Theta(n) \) is better than \(\Theta(n^2) \), etc
 - Cannot distinguish between algorithms in the same class
 - two algorithms that are \(\Theta(n) \) worst-case are equivalent theoretically
 - optimization of constants can be done at implementation-time
Order of growth matters

- Example:
 - Say n = 10^9 (1 billion elements)
 - 10 MHz computer ==> 1 instruction takes 10^{-7} seconds
 - Binary search would take
 - $\Theta(n \lg n) = 10^9 \times 10^{-7} \text{ sec} = 3 \text{ microsec}$
 - Sequential search would take
 - $\Theta(n^2) = 10^9 \times 10^{-7} \text{ sec} = 100 \text{ seconds}$
 - Finding all pairs of elements would take
 - $\Theta(n^3) = (10^9)^2 \times 10^{-7} \text{ sec} = 3170 \text{ years}$
 - Imagine $\Theta(n^3)$
 - Imagine $\Theta(2^n)$

Assume we have a 1 GHz computer.
This means an instruction takes 1 microsecond (10^{-9} seconds).

We have 3 algorithms:
- A: 400n
- B: 2n^2
- C: 2^n

What is the maximum input size that can be solved with each algorithm in:
- 1 second
- 1 minute
- 1 hour

<table>
<thead>
<tr>
<th>Running time (in microseconds)</th>
<th>1 sec</th>
<th>1 min</th>
<th>1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>400n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2n^2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2^n</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercise

- We have an array X containing a sequence of numbers. We want to compute another array A such that A[i] represents the average X[0] + X[1] + ... X[i]/(i+1).
 - A[0] = X[0]
 - A[1] = (X[0] + X[1])/2
 - ...

 The first i values of X are referred to as the i-prefix of X. X[0] + ... X[i] is called prefix-sum, and A[i] prefix average.

- Application: In Economics, Imagine that X[i] represents the return of a mutual fund in year i. A[i] represents the average return over i years.

- Write a function that creates, computes and returns the prefix averages.
  ```java
double[] computePrefixAverage(double[] X)
```

- Analyze your algorithm (worst-case running time).
Asymptotic Analysis: Overview

- Running time = number of instructions
- RAM model of computation

- Want the worst-case running time as a function of input size

- Find the tight order of growth of the worst-case running time
 - a Theta-bound

- Classification of growth rates
 - \(\Theta(1) < \Theta(\log n) < \Theta(n) < \Theta(n\log n) < \Theta(n^2) < \Theta(n^3) < \Theta(2^n) \)

- At the algorithm design level, we want to find the most efficient algorithm in terms of growth rate
- We can optimize constants at the implementation step