csci 210: Data Structures

Program Analysis
Summary

- Summary
 - analysis of algorithms
 - asymptotic analysis
 - big-O
 - big-Omega
 - big-theta
 - asymptotic notation
 - commonly used functions
 - discrete math refresher

- READING:
 - Textbook chapter 2 (p. 13–26)
Analysis of algorithms

- Analysis of algorithms and data structure is the major force that drives the design of solutions.
 - there are many solutions to a problem: pick the one that is the most efficient
 - how to compare various algorithms? Analyze algorithms.
- Algorithm analysis: analyze the cost of the algorithm
 - cost = time: How much time does this algorithm require?
 - The primary efficiency measure for an algorithm is time
 - all concepts that we discuss for time analysis apply also to space analysis
 - cost = space: How much space (i.e. memory) does this algorithm require?
 - cost = space + time
 - etc
- Running time of an algorithm
 - increases with input size
 - on inputs of same size, can vary from input to input
 - e.g.: linear search an un-ordered array
 - depends on hardware
 - CPU speed, hard-disk, caches, bus, etc
 - depends on OS, language, compiler, etc
• Everything else being equal
 • we’d like to compare algorithms
 • we’d like to study the relationship running time vs. size of input

• How to measure running time of an algorithm?
 • 1. experimental studies
 • 2. theoretical analysis

• Experimental analysis
 • implement
 • chose various input sizes
 • for each input size, chose various inputs
 • run algorithm
 • time
 • compute average
 • plot
Experimental analysis

- **Limitations**
 - need to implement the algorithm
 - need to implement all algorithms that we want to compare
 - need many experiments
 - try several platforms

- **Advantages**
 - find the best algorithm in practice

- We would like to analyze algorithms without having to implement them

- Basically, we would like to be able to look at two algorithms flowcharts and decide which one is better
Theoretical analysis

- **RAM model of computation**
 - Assume all operations cost the same
 - Assume all data fits in memory

- **Running time (efficiency) of an algorithm:**
 - the number if operations executed by the algorithm

- **Does this reflect actual running time?**
 - multiply nb. of instructions by processor speed
 - 1GHz processor ==> 10^9 instructions/second

- **Is this accurate?**
 - Not all instructions take the same...
 - Various other effects.
 - Overall, it is a very good predictor of running time in most cases.
Terminology

- Notation: \(n \) = size of the input to the problem
- Running time:
 - number of operations/instructions executed on an input of size \(n \)
 - expressed as function of \(n \): \(f(n) \)
- For an input of size \(n \), running time may be smaller on some inputs than on others
- Best case running time:
 - the smallest number of operations on an input of size \(n \)
- Worst-case running time:
 - the largest number of operations on an input of size \(n \)
- For any \(n \)
 - best-case running time(\(n \)) \(\leq \) running time(\(n \)) \(\leq \) worst-case running time (\(n \))
- Ideally, want to compute average-case running time
 - need to know the distribution of the input
 - often assume uniform distribution (all inputs are equally likely), but this may not be realistic
Running time

- Expressed as functions of n: f(n)
- The most common functions for running times are the following:
 - constant time:
 - f(n) = c
 - logarithmic time
 - f(n) = lg n
 - linear time
 - f(n) = n
 - n lg n
 - f(n) = n lg n
 - quadratic
 - f(n) = n^2
 - cubic
 - f(n) = n^3
 - exponential
 - f(n) = a^n
Constant running time

- $f(n) = c$
 - Meaning: for any n, $f(n)$ is a constant c

- Elementary operations
 - arithmetic operations
 - boolean operations
 - assignment statement
 - function call
 - access to an array element $a[i]$
 - etc
Logarithmic running time

- $f(n) = \log_c n$
- **Logarithm definition:**
 - $x = \log_c n$ if and only if $c^x = n$
 - by definition, $\log_c 1 = 0$

- In algorithm analysis we use the ceiling to round up to an integer
 - the ceiling of x: the smallest integer $\geq x$
 - e.g. $\lceil \log_b n \rceil$ is the number of times you can divide n by b until you get a number ≤ 1
 - e.g.
 - $\lceil \log_2 8 \rceil = 3$
 - $\lceil \log_2 10 \rceil = 4$

- Notation: $\lg n = \log_2 n$
- Refresher: Logarithm rules
- Note: computing $\lg n$ on your calculator
 - $\lg n = \log_{10} n / \log_{10} 2$
Exercises

Simplify these expressions

• \(\lg 2n = \)

• \(\lg \left(\frac{n}{2}\right) = \)

• \(\lg n^3 = \)

• \(2^{\lg n} \)

• \(\log_4 n = \)
public static int binarySearch(int[] a, int key) {
 int left = 0;
 int right = a.length - 1;
 while (left <= right) {
 int mid = left + (right - left) / 2;
 if (key < a[mid]) right = mid - 1;
 else if (key > a[mid]) left = mid + 1;
 else return mid;
 }
 // not found
 return -1;
}

- running time:
 - best case: constant
 - worst-case: \(\log n \)

Why? input size halves at every iteration of the loop
Linear running time

- \(f(n) = n \)

Example:
- doing one pass through an array of \(n \) elements
- e.g.
- finding min/max/average in an array
- computing sum in an array
- search an unordered array (worst-case)

```java
int sum = 0
for (int i=0; i< a.length; i++)
    sum += a[i]
```
n-lg-n running time

- \(f(n) = n \lg n \)
- grows faster than \(n \) (i.e. it is slower than \(n \))
- grows slower than \(n^2 \)

Examples
- performing \(n \) binary searches in an ordered array
- sorting
Quadratic time

- $f(n) = n^2$
- appears in nested loops
- enumerating all pairs of n elements

Example 1:
```
for (i=0; i<n; i++)
  for (j=0; j<n; j++)
    //do something
```

Example 2:
```
//selection sort:
for (i=0; i<n-1; i++)
  minIndex = index-of-smallest element in a[i..n-1]
  swap a[i] with a[minIndex]
```

running time:
- index-of-smallest element in $a[i..j]$ takes $j-i+1$ operations
- $n + (n-1) + (n-2) + (n-3) + ... + 3 + 2 + 1$
- this is n^2
Math refresher

- **Lemma:**

 \[1 + 2 + 3 + 4 + \ldots + (n-2) + (n-1) + n = \frac{n(n+1)}{2} \]
 (arithmetic sum)

- **Proof:**
Cubic running times

- **Cubic running time:** \(f(n) = n^3 \)

- **Examples:**
 - nested loops
 - Enumerate all triples of elements
 - Imagine cities on a map. Are there 3 cities that no two are not joined by a road?
 - Solution: enumerate all subsets of 3 cities. There are \(n \) chose 3 different subsets, which is order \(n^3 \).

- **In general, a polynomial running time:** \(f(n) = n^d, \quad d > 0 \)
Exponential running time

- Exponential running time: $f(n) = a^n$, $a > 1$

- Examples:
 - running time of Tower of Hanoi (see later)
 - moving n disks from A to B requires at least $2n$ moves; which means it requires at least this much time

- Math refresher: exponent rules
Asymptotic analysis

• Focus on the growth of rate of the running time, as a function of n
• That is, ignore the constant factors and the lower-order terms
• Focus on the big-picture
• Example: we’ll say that $2n$, $3n$, $5n$, $100n$, $3n+10$, $n + \log n$, are all linear

• Why?
 • constants are not accurate anyways
 • operations are not equal
 • capture the dominant part of the running time

• Notations:
 • Big-Oh:
 • express upper-bounds
 • Big-Omega:
 • express lower-bounds
 • Big-Theta:
 • express tight bounds (upper and lower bounds)
Big-Oh

- **Definition:** \(f(n) \) is \(O(g(n)) \) if there exists \(c > 0 \) such that \(f(n) \leq cg(n) \) for all \(n \geq n_0 \)

- **Intuition:**
 - big-oh represents an upper bound
 - when we say \(f \) is \(O(g) \) this means that
 - \(f \leq g \) asymptotically
 - \(g \) is an upper bound for \(f \)
 - \(f \) stays below \(g \) as \(n \) goes to infinity

- **Examples:**
 - \(2n \) is \(O(n) \)
 - \(100n \) is \(O(n) \)
 - \(10n + 50 \) is \(O(n) \)
 - \(3n + \log n \) is \(O(n) \)
 - \(\log n \) is \(O(\log_{10} n) \)
 - \(\log_{10} n \) is \(O(\log n) \)
 - \(5n^4 + 3n^3 + 2n^2 + 7n + 100 \) is \(O(n^4) \)
Big-Oh

- $2n^2 + n \lg n + n + 10$
 - is $O(n^2 + n \lg n)$
 - is $O(n^3)$
 - is $O(n^4)$
 - is $O(n^2)$

- $3n + 5$
 - is $O(n^{10})$
 - is $O(n^2)$
 - is $O(n + \lg n)$

- Let’s say you are 2 minutes away from the top and you don’t know that.
 You ask: How much further to the top?
 - Answer 1: at most 3 hours (True, but not that helpful)
 - Answer 2: just a few minutes.

- When finding an upper bound, the goal is to find the best one possible.

Exercises

• Using the definition, show the following:

 • 100n is \(O(n) \)

 • \(n \) is \(O(100n) \)

 • 15n+7 is \(O(n) \)

 • 15n+7 is \(O(n^2) \)

 • 5n+4 is \(O(2n+3) \)

 • 4n^2+9n+8 is \(O(n^2) \)
Exercises

Write Big-Oh upper bounds for each of the following.

- $10n - 2$
- $5n^3 + 2n^2 + 10n + 100$
- $5n^2 + 3\log n + 2n + 5$
- $20n^3 + 10n \log n + 5$
- $3n \log n + 2$
- $2^{n+2} + n^3 + 20$
- $2n + 100 \log n$
Definition:

- $f(n)$ is $\Omega(g(n))$ if there exists $c > 0$ such that $f(n) \geq cg(n)$ for all $n \geq n_0$.

Intuition:

- Big-omega represents a lower bound.
- When we say f is $\Omega(g)$ this means that $f \geq g$ asymptotically.
- g is a lower bound for f.
- f stays above g as n goes to infinity.

Examples:

- $3n \lg n + 2n$ is $\Omega(n \lg n)$
- $2n + 3$ is $\Omega(n)$
- $4n^2 + 3n + 5$ is $\Omega(n)$
- $4n^2 + 3n + 5$ is $\Omega(n^2)$

$O()$ and $\Omega()$ are symmetrical:

- $f(n)$ is $g(n)$ \iff $g(n)$ is $\Omega(f(n))$
Big-Theta

- **Definition:**
 - \(f(n) \) is \(\Theta(g(n)) \) if \(f(n) \) is \(O(g(n)) \) and \(f \) is \(\Omega(g(n)) \)
 - i.e. there are constants \(c' \) and \(c'' \) such that \(c'g(n) \leq f(n) \leq c''g(n) \)

- **Intuition:**
 - \(f \) and \(g \) grow at the same rate, up to constant factors
 - \(\Theta \) captures the order of growth

- **Examples:**
 - \(3n + \log n + 10 \) is \(O(n) \) and \(\Omega(n) \) \(\Rightarrow \) is \(\Theta(n) \)
 - \(2n^2 + n \log n + 5 \) is \(\Theta(n^2) \)
 - \(3\log n + 2 \) is \(\Theta(\log n) \)
Asymptotic Analysis

- Find tight bounds for the best-case and worst-case running times
- Running time is Omega(best-case running time)
- Running time is O(worst-case running time)
- Example:
 - binary search is Theta(1) in the best case
 - binary search is Theta(lg n) in the worst case
 - binary search is Omega(1) and O(lg n)
- Usually we are interested the worst-case running time
 - a Theta-bound for the worst-case running time
- Example:
 - worst-case binary search is Theta(lg n)
 - worst-case linear search is Theta(n)
 - worst-case insertion sort is Theta(n^2)
 - worst-case bubble-sort is O(n^2)
 - worst-case find-min in an array is Theta(n)
- It is correct to say worst-case binary search is O(lg n), but a Theta-bound is better
Asymptotic Analysis

• Suppose we have two algorithms for a problem:
 ● Algorithm A has a running time of $O(n)$
 ● Algorithm B has a running time of $O(n^2)$

• Which is better?
Asymptotic Analysis

- Suppose we have two algorithms for a problem:
 - Algorithm A has a running time of \(\Theta(n) \)
 - Algorithm B has a running time of \(\Theta(n^2) \)

- Which is better?
 - order classes of functions by their order of growth

\[
\Theta(1) < \Theta(\log n) < \Theta(n) < \Theta(n\log n) < \Theta(n^2) < \Theta(n^3) < \Theta(2^n)
\]

- \(\Theta(n) \) is better than \(\Theta(n^2) \), etc

- Cannot distinguish between algorithms in the same class
 - two algorithms that are \(\Theta(n) \) worst-case are equivalent theoretically
 - optimization of constants can be done at implementation-time
Order of growth matters

- Example:
 - Say \(n = 10^9 \) (1 billion elements)
 - 10 MHz computer \(\Rightarrow \) 1 instruction takes \(10^{-7} \) seconds
 - Binary search would take
 - \(\Theta(\log n) = \log 10^9 \times 10^{-7} \text{ sec} = 30 \times 10^{-7} \text{ sec} = 3 \text{ microsec} \)
 - Sequential search would take
 - \(\Theta(n) = 10^9 \times 10^{-7} \text{ sec} = 100 \text{ seconds} \)
 - Finding all pairs of elements would take
 - \(\Theta(n^2) = (10^9)^2 \times 10^{-7} \text{ sec} = 10^{11} \text{ seconds} = 3170 \text{ years} \)

- Imagine \(\Theta(n^3) \)
- Imagine \(\Theta(2^n) \)
Order of growth matters

<table>
<thead>
<tr>
<th>n</th>
<th>lg n</th>
<th>n</th>
<th>n lg n</th>
<th>n^2</th>
<th>n^3</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3</td>
<td>8</td>
<td>24</td>
<td>64</td>
<td>512</td>
<td>256</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>16</td>
<td>64</td>
<td>256</td>
<td>4096</td>
<td>65536</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>32</td>
<td>160</td>
<td>1024</td>
<td>32768</td>
<td>4294967296</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
<td>64</td>
<td>384</td>
<td>4096</td>
<td>262144</td>
<td>1.8 x 10^19</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
<td>128</td>
<td>896</td>
<td>16384</td>
<td>2097152</td>
<td>340 x 10^38</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
<td>256</td>
<td>2048</td>
<td>65536</td>
<td>16777216</td>
<td>1.15 x 10^77</td>
</tr>
<tr>
<td>512</td>
<td>9</td>
<td>512</td>
<td>4608</td>
<td>262144</td>
<td>134217728</td>
<td>1.34 x 10^154</td>
</tr>
<tr>
<td>1024</td>
<td>10</td>
<td>1024</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024^2</td>
<td>20</td>
<td>1048576</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Assume we have a 1 GHz computer.
• This means an instruction takes 1 microsecond (10^{-9} seconds).

• We have 3 algorithms:
• A: $400n$
• B: $2n^2$
• C: 2^n

• What is the maximum input size that can be solved with each algorithm in:
 • 1 second
 • 1 minute
 • 1 hour

<table>
<thead>
<tr>
<th>Running time (in microseconds)</th>
<th>1 sec</th>
<th>1 min</th>
<th>1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>$400n$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2n^2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2^n</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise

- We have an array X containing a sequence of numbers. We want to compute another array A such that $A[i]$ represents the average $X[0] + X[1] + ... + X[i] / (i+1)$.
 - $A[0] = X[0]$
 - $A[1] = (X[0] + X[1]) / 2$
 - ...

- The first i values of X are referred to as the i-prefix of X. $X[0] + ... + X[i]$ is called prefix-sum, and $A[i]$ prefix average.

- Application: In Economics. Imagine that $X[i]$ represents the return of a mutual fund in year i. $A[i]$ represents the average return over i years.

- Write a function that creates, computes and returns the prefix averages.
  ```
  double[] computePrefixAverage(double[] X)
  ```

- Analyze your algorithm (worst-case running time).
Asymptotic Analysis: Overview

- Running time = number of instructions
- RAM model of computation

- Want the worst-case running time as a function of input size

- Find the tight order of growth of the worst-case running time
 - a Theta-bound

- Classification of growth rates
 \[\Theta(1) < \Theta(\lg n) < \Theta(n) < \Theta(n\lg n) < \Theta(n^2) < \Theta(n^3) < \Theta(2^n) \]

- At the algorithm design level, we want to find the most efficient algorithm in terms of growth rate
- We can optimize constants at the implementation step