csci 210: Data Structures

Priority Queues and Heaps
Summary

• Topics
 • the Priority Queue ADT
 • Priority Queue vs Dictionary and Queues
 • implementation of PQueue
 • linked lists
 • binary search trees
 • heaps
 • Heaps
Priority Queues

- A Priority Queue is an abstract data structure for storing a collection of prioritized elements
- The elements in the queue consist of a value v with an associated priority or key k
 - element = (k,v)
- A priority queue supports
 - arbitrary element insertion: insert value v with priority k
 - insert(k, v)
 - delete elements in order of their priority: that is, the element with the smallest priority can be removed at any time
 - removeMin()
- Priorities are not necessarily unique: there can be several elements with same priority

- Examples: store a collection of company records
 - compare by number of employees
 - compare by earnings

- The priority is not necessarily a field in the object itself. It can be a function computed based on the object. For e.g., priority of standby passengers is determined as a function of frequent flyer status, fare paid, check-in time, etc.
Priority Queues

• Examples
 • Queue of jobs waiting for the processor
 • Queue of standby passengers waiting to get a seat
 • ...

• Note: the keys must be “comparable” to each other

• PQ Queue ADT
 • size()
 • return the number of entries in PQ
 • isEmpty()
 • test whether PQ is empty
 • min()
 • return (but not remove) the entry with the smallest key
 • insert(k, x)
 • insert value x with key k
 • removeMin()
 • remove from PQ and return the entry with the smallest key
Priority Queue example

(k,v) key=integer, value=letter

PQ={}

• insert(5,A) PQ={(5,A)}
• insert(9,C) PQ={(5,A), (9,C)}
• insert(3,B) PQ={(5,A), (9,C), (3,B)}
• insert(7,D) PQ={(5,A), (7,D), (9,C), (3,B)}
• min() return (3,B)
• removeMin() PQ = {(5,A), (7,D), (9,C)}
• size() return 3
• removeMin() return (5,A) PQ={(7,D), (9,C)}
• removeMin() return (7,D) PQ={(9,C)}
• removeMin() return (9,C) PQ={}

return (3,B)
Priority queue implementations

- unsorted linked list
 - fast insertions, slow deletions

- sorted linked list
 - fast deletions, slow insertions

- (balanced) binary search trees
 - $O(lg n)$

- (binary) heaps
 - $O(lg n)$
 - simpler
Heaps

- A heap is an array viewed as a complete binary tree, level by level:
 - As a consequence, children positions can be computed without storing references
 - root has index 1
 - left(i) = 2i
 - right(i) = 2i + 1
 - parent(i) = i / 2

- Each node satisfies the heap property:
 - the keys of v’s children are >= the key of v

- As a consequence, the keys encountered on a root-to-leaf traversal are in increasing order (or equal); the smallest key is stored at the top.
Heaps

- Proposition: A heap T storing n elements has height $h = \lg_2 n$.

- insert(k,v)
 - insert it at last position in the heap, and “trickle” it up (swap node with parent up the leaf-root path)

- deleteMin()
 - take the last element and put it in the root
 - this will violate the heap property, so “trickle” it down: swap the node with the smaller if its 2 children, and repeat

- insert and deleteMin take $O(h) = O(\lg n)$
Sort with a Priority Queue

- An important application of a priority queue is sorting.

PriorityQueueSort (collection S of n elements)
- put the elements in S in an initially empty priority queue by means of a series of n insert() operations on the pqueue, one for each element
- extract the elements from the pqueue by means of a series of n removeMin() operations

Pseudocode for PriorityQueueSort(S)
- input: a collection S storing n elements
- output: the collection S sorted
- P = new PQueue()
- while !S.isEmpty() do
 - e = S.removeFirst()
 - P.insert(e)
- while !P.isEmpty() do
 - e = P.removeMin()
 - S.addLast(e)
Heapsort

- sort with a heap
 - insert all elements
 - deleteMin n times

- time: \(O(n \lg n) \)

- Optimizations:
 - Constructing the heap can be improved so that it takes \(O(n) \) time (instead of \(O(n \lg n) \)), but the overall running time of the heapsort stays the same
 - idea: convert the array into a heap bottom up
 - The whole sort can be done “in place” (assume the input is stored in an array \(A \); you want to re-arrange the array \(A \) to be in sorted order, without creating a new array.)
 - use a max-heap instead of a min-heap (the heap property is reversed and the max element is stored at top)
 - repeatedly deleteMax
 - the heap shrinks by one every time, and at the end \(A[] \) is sorted