csci 210: Data Structures

Trees
Summary

• **Topics**
 • general trees, definitions and properties
 • interface and implementation
 • tree traversal algorithms
 • depth and height
 • pre-order traversal
 • post-order traversal
 • binary trees
 • properties
 • interface
 • implementation
 • binary search trees
 • definition
 • h-n relationship
 • search, insert, delete
 • performance

• **READING:**
 • GT textbook chapter 7 and 10.1
Trees

- So far we have seen linear structures
 - linear: before and after relationship
 - lists, vectors, arrays, stacks, queues, etc
- Non-linear structure: trees
 - probably the most fundamental structure in computing
 - hierarchical structure
 - Terminology: from family trees (genealogy)
Trees

- store elements hierarchically
- the top element: root
- except the root, each element has a parent
- each element has 0 or more children
Trees

Definition
- A tree T is a set of nodes storing elements such that the nodes have a parent-child relationship that satisfies the following:
 - if T is not empty, T has a special tree called the root that has no parent
 - each node v of T different than the root has a unique parent node w; each node with parent w is a child of w

Recursive definition
- T is either empty
- or consists of a node r (the root) and a possibly empty set of trees whose roots are the children of r

Terminology
- siblings: two nodes that have the same parent are called siblings
- internal nodes
 - nodes that have children
- external nodes or leaves
 - nodes that don’t have children
- ancestors
- descendants
Trees

- **root**
- **internal nodes**
- **leaves**
Trees

ancestors of u
Trees

descendants of u
Application of trees

- Applications of trees
 - class hierarchy in Java
 - file system
 - storing hierarchies in organizations
Whatever the implementation of a tree is, its interface is the following:

- `root()`
- `size()`
- `isEmpty()`
- `parent(v)`
- `children(v)`
- `isInternal(v)`
- `isExternal(v)`
- `isRoot()`
class Tree {

 TreeNode root;

 // Tree ADT methods...
}

class TreeNode<Type> {
 Type data;
 int size;
 TreeNode parent;
 TreeNode firstChild;
 TreeNode nextSibling;

 getParent();
 getChild();
 getNextSibling();
}
Algorithms on trees

Definition:
- depth(T, v) is the number of ancestors of v, excluding v itself

//compute the depth of a node v in tree T
int depth(T, v)

recursive formulation
- if v == root, then depth(v) = 0
- else, depth(v) is 1 + depth (parent(v))

Algorithm:
```java
int depth(T, v) {
    if T.isRoot(v) return 0
    return 1 + depth(T, T.parent(v))
}
```

Analysis:
- O(number of ancestors) = O(depth_v)
- in the worst case the path is a linked-list and v is the leaf
- ==> O(n), where n is the number of nodes in the tree
Algorithms on trees

- **Definition:**
 - height of a node v in T is the length of the longest path from v to any leaf

- \[\text{compute the height of tree } T \]
 - \[\text{int height}(T,v) \]

- **recursive definition:**
 - if v is leaf, then its height is 0
 - else $\text{height}(v) = 1 + \text{maximum height of a child of } v$

- **definition:**
 - the height of a tree is the height of its root

- **Proposition:** the height of a tree T is the maximum depth of one of its leaves.
Algorithm:

```java
int height(T, v) {
    if T.isExternal(v) return 0;
    int h = 0;
    for each child w of v in T do
        h = max(h, height(T, w))
    return h+1;
}
```

Analysis:

- total time: the sum of times spent at each node, for all nodes
- the algorithm is recursive;
 - v calls height(w) on all children w of v
 - height() will eventually be called on every descendant of v
 - is called on each node precisely once, because each node has one parent
- aside from recursion
 - for each node v: go through all children of v
 - \(O(1 + c_v)\) where \(c_v\) is the number of children of v
 - over all nodes: \(O(n) + \Sigma (c_v)\)
 - each node is child of only one node, so its processed once as a child
 - \(\Sigma (c_v) = n - 1\)
- total: \(O(n)\), where n is the number of nodes in the tree
Tree traversals

• A traversal is a systematic way to visit all nodes of T.

• pre-order: root, children
 • parent comes before children; overall root first

• post-order: children, root
 • parent comes after children; overall root last

void preorder(T, v)
 visit v
 for each child w of v in T do
 preorder(w)

void postorder(T, v)
 for each child w of v in T do
 postorder(w)
 visit v

• Analysis: O(n) [same arguments as before]
Examples

- Tree associated with a document

In what order do you read the document?
• Tree associated with an arithmetical expression

• Write method that evaluates the expression. In what order do you traverse the tree?
Binary trees
• **Definition:** A binary tree is a tree such that
 • every node has at most 2 children
 • each node is labeled as being either a left child or a right child

• **Recursive definition:**
 • a binary tree is empty;
 • or it consists of
 • a node (the root) that stores an element
 • a binary tree, called the left subtree of T
 • a binary tree, called the right subtree of T

• **Binary tree interface**
 • Tree T
 • `left(v)`
 • `right(v)`
 • `hasLeft(v)`
 • `hasRight(v)`
 • `isInternal(v)`, `isExternal(v)`, `isRoot(v)`, `size()`, `isEmpty()`
Properties of binary trees

- In a binary tree
 - level 0 has ≤ 1 node
 - level 1 has ≤ 2 nodes
 - level 2 has ≤ 4 nodes
 - ...
 - level i has $\leq 2^i$ nodes

- Proposition: Let T be a binary tree with n nodes and height h. Then

 - $h + 1 \leq n \leq 2^{h+1} - 1$
 - $\log(n+1) - 1 \leq h \leq n - 1$
Binary tree implementation

- use a linked-list structure; each node points to its left and right children; the tree class stores the root node and the size of the tree

- implement the following functions:
 - left(v)
 - right(v)
 - hasLeft(v)
 - hasRight(v)
 - isInternal(v)
 - isExternal(v)
 - isRoot(v)
 - size()
 - isEmpty()

- also
 - insertLeft(v, e)
 - insertRight(v, e)
 - remove(e)
 - addRoot(e)
Binary tree operations

- **insertLeft**(v,e):
 - create and return a new node w storing element e, add w as the left child of v
 - an error occurs if v already has a left child

- **insertRight**(v,e)

- **remove**(v):
 - remove node v, replace it with its child, if any, and return the element stored at v
 - an error occurs if v has 2 children

- **addRoot**(e):
 - create and return a new node r storing element e and make r the root of the tree;
 - an error occurs if the tree is not empty

- **attach**(v,T1, T2):
 - attach T1 and T2 respectively as the left and right subtrees of the external node v
 - an error occurs if v is not external
Performance

• all $O(1)$
 • left(v)
 • right(v)
 • hasLeft(v)
 • hasRight(v)
 • isInternal(v)
 • is External(v)
 • isRoot(v)
 • size()
 • isEmpty()
 • addRoot(e)
 • insertLeft(v,e)
 • insertRight(v,e)
 • remove(e)
Binary tree traversals

- Binary tree computations often involve traversals
 - pre-order: root left right
 - post-order: left right root
 - additional traversal for binary trees
 - in-order: left root right
 - visit the nodes from left to right

- Exercise:
 - write methods to implement each traversal on binary trees
Application: Tree drawing

- We can use an in-order traversal for drawing a tree. We can draw a binary tree by assigning coordinate x and y of each node in the following way:

- $x(v)$ is the number of nodes visited before v in the in-order traversal of v
- $y(v)$ is the depth of v
Binary tree searching

- write search(v, k)
 - search for element k in the subtree rooted at v
 - return the node that contains k
 - return null if not found

- performance
 - ?
Binary Search Trees (BST)

- **Motivation:**
 - want a structure that can search fast
 - arrays: search fast, updates slow
 - linked lists: search slow, updates fast

- **Intuition:**
 - tree combines the advantages of arrays and linked lists

- **Definition:**
 - a BST is a binary tree with the following “search” property
 - for any node v
 - all nodes in $T_1 \leq k$
 - all nodes in $T_2 \geq k$

\[\begin{align*}
T_1 & \leq k \\
T_2 & \geq k
\end{align*} \]
• Example
Sorting a BST

- Print the elements in the BST in sorted order
Sorting a BST

- Print the elements in the BST in sorted order.

- in-order traversal: left - node - right
- Analysis: \(O(n) \)

```java
// print the elements in tree of v in order
sort(BSTNode v)
    if (v == null) return;
    sort(v.left());
    print v.getData();
    sort(v.right());
```
Searching in a BST
//return the node w such that w.getData() == k or null if such a node
//does not exist
BSTNode search (v, k) {
 if (v == null) return null;
 if (v.getData() == k) return v;
 if (k < v.getData()) return search(v.left(), k);
 else return search(v.right(), k)
}

• Analysis:
 • search traverses (only) a path down from the root
 • does NOT traverse the entire tree
 • O(depth of result node) = O(h), where h is the height of the tree
Inserting in a BST

- insert 25
Inserting in a BST

- insert 25
 - There is only one place where 25 can go

- //create and insert node with key k in the right place
- void insert (v, k) {
 //this can only happen if inserting in an empty tree
 if (v == null) return new BSTNode(k);

 if (k <= v.getData()) {
 if (v.left() == null) {
 //insert node as left child of v
 u = new BSTNode(k);
 v.setLeft(u);
 } else {
 return insert(v.left(), k);
 }
 } else //if (v.getData() > k) {
 ...
 }
}
Inserting in a BST

- Analysis:
 - similar with searching
 - traverses a path from the root to the inserted node
 - $O(\text{depth of inserted node})$
 - this is $O(h)$, where h is the height of the tree
Deleting in a BST

- delete 87
- delete 21
- delete 90

- case 1: delete a leaf \(x \)
 - if \(x \) is left of its parent, set \(\text{parent}(x).\text{left} = \text{null} \)
 - else set \(\text{parent}(x).\text{right} = \text{null} \)

- case 2: delete a node with one child
 - link \(\text{parent}(x) \) to the child of \(x \)

- case 2: delete a node with 2 children
 - ??
Deleting in a BST

- delete 90

- copy in u 94 and delete 94
 - the left-most child of right(x)
- or
- copy in u 87 and delete 87
 - the right-most child of left(x)

node has \leq 1 child
Deleting in a BST

- Analysis:
 - traverses a path from the root to the deleted node
 - and sometimes from the deleted node to its left-most child
 - this is $O(h)$, where h is the height of the tree
BST performance

• Because of search property, all operations follow one root-leaf path
 • insert: \(O(h) \)
 • delete: \(O(h) \)
 • search: \(O(h) \)

• We know that in a tree of \(n \) nodes
 • \(h \geq \log_2 (n+1) - 1 \)
 • \(h \leq n-1 \)

• So in the worst case \(h \) is \(O(n) \)
 • BST insert, search, delete: \(O(n) \)
 • just like linked lists/arrays
BST performance

- worst-case scenario
 - start with an empty tree
 - insert 1
 - insert 2
 - insert 3
 - insert 4
 - ...
 - insert n

- it is possible to maintain that the height of the tree is $\Theta(lg n)$ at all times
 - by adding additional constraints
 - perform rotations during insert and delete to maintain these constraints

- Balanced BSTs: h is $\Theta(lg n)$
 - Red-Black trees
 - AVL trees
 - 2-3-4 trees
 - B-trees

- to find out more.... take csci231 (Algorithms)