An Introduction to Algorithms: Efficiency of algorithms

Comparing Algorithms

- Algorithm
 - Design
 - Correctness
 - Efficiency
 - Also, clarity, elegance, ease of understanding

- There are many ways to solve a problem
 - Conceptually
 - Also different ways to write pseudocode for the same conceptual idea

- How to compare algorithms?

Efficiency of Algorithms

- Algorithms are implemented on real machines, which have limited resources

- Efficiency: Amount of resources used by an algorithm
 - Space (number of variables)
 - Time (number of instructions)

- When designing an algorithm must be aware of its use of resources

- If there is a choice, pick the more efficient algorithm!

Efficiency of Algorithms

- Usually efficiency means time-efficiency, that is, running time.

Analyzing efficiency comes down to: faster is better.

- How to measure/estimate time efficiency of an algorithm?
 - let it run and see how long it takes
 - We don’t want to implement it…
 - Also…
 - On what machine?
 - On what inputs?
 - On what size of input?

Time Efficiency

- depends on input
 - Example: the sequential search algorithm
 - In the best case, how fast can the algorithm terminate?
 - Target is the first element
 - In the worst case, how fast can the algorithm terminate?
 - Target is the last element, or not in the list
 - Example: What is the best-case of binary search?
 - Target is the middle element

- If the best-case running times of two algorithms are the same... Do we know which one is more efficient in general?? No.
 - We normally look at the worst-case running time, i.e., the longest it could possibly take for an input of a fixed size

Time efficiency

- depends on size of input
 - Example: list is 3 5
 - Search: worst case 2 comparisons
 - Binary search: worst-case 2 comparisons
 - Does this mean they are equal?? Nope.
 - We are interested in running time for large values of the input
 - The differences between algorithms become larger as the input becomes larger
 - Example: list of size 15
 - Search worst case is 15 comparisons
 - Binary search worst case is 4 comparisons

- Running time is a function of the input size
 - usually the input size is denoted n
 - the running time will be a function of n
Time Efficiency

- We want a measure of time efficiency which is independent of machine, speed etc
- Basically, we want to be able to look at 2 algorithms in pseudocode and compare them (without implementing them)
- (Time) Efficiency of an algorithm:
 - assume ideal computer on which all instructions take the same amount of time
 - Efficiency = the number of instructions executed
- Is this accurate?
 - Not all instructions take the same amount of time...
 - But, it is a good approximation of running time in most cases

(Sequential) Search

- Variables: i, target, list a of 100 elements
- i = 1
- while (i <= 100)
 - Print "enter number: " i :
 - Get ai
 - i = i+1
- if (ai == target) set found = 1
- i = i+1
- if (found ==1) print "Target found at position" i-1
- Else print " Target not found."

Time efficiency

Assume the input has size n.
We are normally interested in best-case and worst-case efficiency:

worst case efficiency
- is the maximum number of instructions that an algorithm can take for any input of size n.

best case efficiency
- is the minimum number of instructions that an algorithm can take for any input of size n.

Sometimes we are also interested in

average case efficiency
- the efficiency averaged on all possible inputs of size n
- must assume a distribution of the input
- we normally assume uniform distribution (all inputs are equally probable)

Analysis of Sequential Search

Assume the size of input list is n.

- Reading the n inputs from user:
 - 4n instructions
- The search loop
 - Best-case, target is found immediately: 3 instructions or so
 - Worst-case, target is not found: 3n + 1 instructions

- Thus, overall:
 - best case: 4n+3
 - worst-case: 7n+1
- Both cases are of the form an+b, i.e. linear in n

Order of Magnitude

- **sequential search**: 7n+1 instructions worst-case
 - Are these constants accurate? Can we ignore them?
- **Simplification**:
 - ignore the constants, look only at the order of magnitude
 - n, 0.5n, 2n, 4n, 3n+5, 2n+100, 0.1n+3 …are all linear
 - we say that their order of magnitude is n, denoted as Θ(n)
 - 3n+5 has order of magnitude n: 3n+5 = Θ(n)
 - 2n +100 has order of magnitude n: 2n+100=Θ(n)
 - 0.1n+3 has order of magnitude n: 0.1n+3=Θ(n)
 - …

Analysis of binary search

Assume the size of the input list is n.

- Assume the input has been read from the user, i.e. we only look at the while loop that searches for the target.
- **What is the best case?**
 - Target is the middle element: some constant number of instructions
- **What is the worst case?**
 - Initially the size of the list in n
 - After the first iteration through the repeat loop, if not found, then either start = m or end = m = size of the list on which we search is n/2
 - Every time in the repeat loop the size of the list is halved: n/2, n/4, ….
 - How many times can a number be halved before it reaches 1?
\[\log_2 x \]

- \(\log_2 x \)
 - The number of times you can half a (positive) number \(x \) before it goes below 1
 - Examples:
 - \(\log_2 16 = 4 \) [16/2=8, 8/2=4, 4/2=2, 2/2=1]

- \(\log_2 n = m \) \(\iff \) \(2^m = n \)
 - \(\log_2 8 = 3 \) \(\iff \) \(2^3 = 8 \)

\[\log_2 x \]

Increases very slowly
- \(\log_2 8 = 3 \)
- \(\log_2 32 = 5 \)
- \(\log_2 128 = 7 \)
- \(\log_2 1024 = 10 \)
- \(\log_2 1000000 = 20 \)
- \(\log_2 1000000000 = 30 \)
- …

Order \(\Theta(\log n) \)

- The search loop in binary search takes:
 - Best-case: constant number of instructions
 - Worst-case: \(4 \log n + 1 \) instructions or so
- We’ll ignore the constants and call this order of magnitude \(\Theta(\log n) \)
- Examples:
 - \(2 \log n + 30 \) has order \(\Theta(\log n) \)
 - \(\log n + 2 \) has order \(\Theta(\log n) \)
 - \(10 \log n + 1 \) has order \(\Theta(\log n) \)

Comparing \(\Theta(\lg n) \) and \(\Theta(n) \)

- Note: \(\Theta(1) \) means constant time
 - \(\Theta(1) \ll \Theta(\lg n) \ll \Theta(n) \)

Does efficiency matter?

- Example:
 - Say \(n = 10^9 \) (1 billion elements)
 - 10 MHz computer \(\Rightarrow \) 1 instr takes \(10^{-7} \) sec
 - Sequential search would take
 - \(\Theta(n) = 10^9 \times 10^{-7} \) sec \(= 100 \) sec
 - Binary search would take
 - \(\Theta(\lg n) = \lg 10^9 \times 10^{-7} \) sec \(= 30 \times 10^{-7} \) sec \(= 3 \) microsec

Exercises

What is the efficiency of the following algorithm? Give a theta-expression for it.

Variables: \(i, n, \) list \(a \) of size 100
\(n = 100 \)
Print “Enter \(n \) elements: ”
\(i = 1 \)
while \((i <= n) \)
 print “enter next element”
 get \(a_i \)
i = i+1
Print “Great, thanks.”

Exercises

What is the efficiency of the following algorithms? Give a theta-expression for it. Distinguish between best and worst cases, if applicable.

- Computing the sum of all elements in a list of size \(n \)
- Computing the smallest or the largest number in a list of size \(n \)
More examples

• What is the efficiency of the following algorithm? Give a theta-expression for it.

```plaintext
Get n
i = 1
while (i <= n)
  print "***"
  i = i+1
j = 1
while (j <= n)
  print "j"
  j = j+1
```

More examples

• Find the running time as a function of n for the following algorithm. It is enough to give a theta-expression for it.

```plaintext
Get n
i = 1
while (i <= n)
  print "****"
  i = i+1
j = 1
while (j <= n)
  print "j"
  j = j+1
Print "done"
```

Order of magnitude $\Theta(n^2)$

• Any algorithm that does on the order of cn^2 work for any constant c

 - $2n^2$ has order of magnitude $\Theta(n^2)$
 - $.5n^2$ has order of magnitude $\Theta(n^2)$
 - $100n^2$ has order of magnitude $\Theta(n^2)$
 - $10n^2 + 10n + 5$ has order of magnitude $\Theta(n^2)$
 - $3n^2 + 2n + 1$ has order of magnitude $\Theta(n^2)$

Orders of magnitude

• Comparing order of magnitudes

 $\Theta(1) << \Theta(n) << \Theta(n^2)$

• There are other orders of magnitude, for instance $\Theta(n^3)$, $\Theta(n^4)$, $\Theta(n \log n)$, $\Theta(2^n)$, etc

• Problems which take $\Theta(2^n)$ time are called exponential. $\Theta(2^n)$ grows so fast with n that these problems are practically impossible to solve for $n > 15$.

Comparison of $\Theta(n)$ and $\Theta(n^2)$

• $\Theta(n)$: n, $2n+5$, $0.01n$, $100n$, $3n+10$, ...
• $\Theta(n^2)$: n^2, $10n^2$, $0.01n^2$, n^2+3n, n^2+10, ...
• We do not distinguish between constants..

 - Then... why do we distinguish between n and n^2 ??
 - Compare the shapes: n^2 grows much faster than n
 - Anything that is order of magnitude n^2 will eventually be larger than anything that is of order n, no matter what the constant factors are
 - Fundamentally n^2 is more time consuming than n
• $\Theta(n^2)$ is larger (less efficient) than $\Theta(n)$

 - $0.1n^2$ is larger than $10n$ (for large enough n)
 - $0.0001n^2$ is larger than $1000n$ (for large enough n)

The Tortoise and the Hare

Does algorithm efficiency matter??

- ...just buy a faster machine!

Example:

- Apple desktop

 - 1GHz (10^9 instr per second), 2000

- Cray computer

 - 10000 GHz (10^{13} instr per second), $30 million$

- Run a $\Theta(n)$ algorithm on an Apple
- Run a $\Theta(n^2)$ algorithm on a Cray

- For what values of n is the Apple desktop faster?
Exercise

- Write an algorithm to ask the user for a number n and print a multiplication table with n lines and columns. In line i and column j it computes the value \(i \times j \).

 For example, for \(n = 5 \):

 \[
 \begin{array}{cccc}
 1 & 2 & 3 & 4 \\
 2 & 4 & 6 & 8 \\
 3 & 6 & 9 & 12 \\
 4 & 8 & 12 & 16 \\
 5 & 10 & 15 & 20 \\
 \end{array}
 \]

 What is the running time of the algorithm, as a function of \(n \)?

Selection Sort

- Idea: grow a sorted subsection of the list from the back to the front

 \[
 \begin{array}{cccc}
 5 & 7 & 2 & 1 \\
 5 & 7 & 2 & 6 \\
 5 & 2 & 1 & 6 \\
 2 & 1 & 5 & 6 \\
 \end{array}
 \]

 ...

- Selection sort, at a high level of abstraction

Levels of abstraction

- It is easier to start thinking of a problem at a high level of abstraction

- Algorithms as building blocks
 - We can build an algorithm from “parts” consisting of algorithms which we already know
 - Selection sort:
 - Iterate through a loop
 - Select largest number in the unsorted section of the list
 - We have seen an algorithm to do this last time
 - Exchange 2 values in a list

- Why sorting?
 - Sorting is ubiquitous (very common)!!
 - Examples:
 - Registrar: Sort students by name or by id or by department
 - Post Office: Sort mail by address
 - Bank: Sort transactions by time or customer name or account number …

- For simplicity, assume input is a list of \(n \) numbers
 - The same ideas can be used to sort names, text, etc

Selection Sort

- Problem: sort a list of items into order

- One further step

 - Get \(a_1, a_2, \ldots, a_n \)
 - Set \(\text{unsortedEnd} = n \)
 - While (\(\text{unsorted} > 1 \))
 - Find the position of the largest element in the unsorted section of the list, that is, among \(a_1, a_2, \ldots, a_{\text{unsortedEnd}} \)
 - Assign this position to \(p \)
 - Swap \(a_p \) with \(a_{\text{unsortedEnd}} \)
 - \(\text{unsortedEnd} = \text{unsortedEnd} - 1 \)
 - End
Selection Sort Analysis

- Iteration 1:
 - Find largest value in a list of n numbers: n-1 comparisons
 - Exchange values and move marker
- Iteration 2:
 - Find largest value in a list of n-1 numbers: n-2 comparisons
 - Exchange values and move marker
- Iteration 3:
 - Find largest value in a list of n-2 numbers: n-3 comparisons
 - Exchange values and move marker
- ...
- Iteration n:
 - Find largest value in a list of 1 numbers: 0 comparisons
 - Exchange values and move marker

Total: \((n-1) + (n-2) + \ldots + 2 + 1 \)

Selection Sort

- Total work (nb of comparisons):
 - \((n-1) + (n-2) + \ldots + 2 + 1 \)
 - This sum is equal to \(\frac{1}{2}n^2 - \frac{1}{2}n \) (proved by Gauss)
 - => order of magnitude is \(\Theta(n^2) \)

Questions
- best-case, worst-case?
- Other sorting ideas?
- Can we find more efficient sorting algorithms? That is, faster than \(\Theta(n^2) \) in the worst case?

Efficiency of algorithms

- Summary: count the number of instructions ignoring constants
- order of magnitudes
 \[\Theta(1) << \Theta(\log n) << \Theta(n) << \Theta(n^2) \]
- We cannot compare two algorithms in the same class
 - if we want to do this, we need to count carefully the constants, among others.
- but we know that a running time of \(\Theta(n) \) is faster than \(\Theta(n^2) \), for large enough values of \(n \)
- If algorithm1 has a worst-case efficiency of \(\Theta(n) \) and algorithm2 has a worst-case efficiency of \(\Theta(n^3) \), then algorithm1 is faster (more efficient) in the worst-case
- At the algorithm design level we want to find the most efficient algorithm in terms of order of magnitude
- We can worry about optimizing each step at the implementation level