
Review for Algorithms Midterm Exam #1
Computer Science 140 & Mathematics 168

Harvey Mudd College
Computer Science Department

Instructor: B. Thom
Fall 2004

General Info:

• The first midterm will be given out on Tuesday, October 5, at the end of class and will
be due back on Thursday, October 7, at the beginning of class. If you wish to download
the corresponding LaTeX files, you will be able to use scp to get them, e.g.

scp bthom@cs.hmc.edu:public html\cs140 exam.zip.

This file will only be available for copy within the dates that the exam can be open.
After you are done taking the exam, you should destroy these files.

• The exam is closed-book and closed-notes, but you may prepare an 8 × 11 crib sheet
(one side) with anything you like written on it (and this may be LateX’d if you like).
Turn in your crib sheet (if you’re using one) with your exam.

• This exam will be a comprehensive, covering all the topics we’ve discussed so far, in-
cluding Dynamic Programming. Problems will be similar in spirit to those you’ve seen
on prior homeworks, requiring a creative application of techniques presented in class to
new situations. As a bare minimum, preparing should involve reviewing the solution
sets you’ve gotten, focusing on their various derivations (as opposed to memorizing
things).

• The exam will be designed to be completed in 2 to 3 hours, but you may spend as
much time as you’d like within the open dates. I recommend you get your prep-work
done before class on Tuesday so that when you receive the exam you can familiarize
yourself with the problems immediately. Then, you can mull over the problems for an
evening or so before you actually sit down to solve them and write up your answers.
(Its amazing what inspiration has flashed upon students while showering!)

• You may not look previous years exams when preparing. However, some practice
problems (taken from, among other places, prior years’ exams) are included here if
you’d like to try a few of them.

• Tuesday’s lecture will be dedicated to answering any questions you might have—about
the practice problems, topics covered in class, how to produce the best tasting biscotti
and brew the best Latte, etc. When you run out of questions, I’ll be out of answers
:-).

1



Rough outline of topics covered so far:

1. Understand asymptotic notation. A good way to make sure you understand the dif-
ferences between Ω, O, and Θ is to derive why log n! ∈ Θ(n log n). Appreciate that
bounds are always with respect to something (e.g. best, worst, average). Remember
that for the lower bound constants, n0 and c must often determined by hand. Why are
lower bounds so valuable and what makes them so valuable? Why are upper bounds
typically easier to derive? Why (and under what conditions) are restricted run-times
(e.g. assuming that n = ak) more generally applicable? Be comfortable with the
thought processes associated with ranking various functions asymptotically.

2. Understand divide-and-conquer. Know how to set up these problems’ recurrence rela-
tions and solve them using the recursion tree method. Understand how to deal with
trees that aren’t balanced and understand when a tree’s height has no impact on
run-time (e.g. recall the order statistics recursion when sorts are done on groups of
3 versus 5). Appreciate why a divide-and-conquer algorithm’s runtime won’t change
when only its “combine” step is modified (and modified in such a way that it is no
more asymptotically expensive than it was before modification).

3. Understand sorting and order statistics – insertion sort, heap-sort, quick-sort, count-
ing sort, radix sort. Know how to analyze the runtime and argue the correctness of a
particular sorting paradigm (often this requires that one argue a particular invariant
is maintained throughout an algorithm’s execution using induction). Which sorting
algorithms rely on a partitioning technique and what is this (p.s. by he way, partition-
ing can be done in place, see page 146 of CLRS)? Why are heaps used so often (reason
one: sorting, reason two: think certain very useful abstract data type operations!).

4. Understand how to derive a lower-bound for a comparison-based sorting algorithm (as
well as other similar paradigms, e.g. HW 2b, Problems 4 and 5). Appreciate the
difference between a particular algorithm’s lower bound and a particular task’s lower
bound.

5. Understand dynamic programming. When can you use it to make a computation more
efficient and when is it unable to help (recall the basic “components” required for
dynamic programming to be useful, Section 15.3 in CLRS). As we did in class and on
numerous HWs, know how to derive a worst-case running time for a recursive solution
and be able to contrast this with a corresponding more-efficient dynamic programming
solution. Aside: what does the term “programming” refer to here? Table lookup!

6. Understand abstract data types (ADT), e.g. heaps, queues, (dynamic) arrays, linked
lists, (balanced) binary search trees, etc. Understand why Red-Black and B- trees are
height balanced.

7. Understand how to use amortization to make an ADT look as good as possible. We
looked at two techniques: aggregation, which charges a worst possible sequence of

2



n operations exactly and uses this to derive an average-cost fee per operation, and
amortization, which assigns fees to operations up front and then argues why these fees
are sufficient to pay for any sequence of n operations.

Some practice problems on these topics:

1. Quicksort is Correct!

Use induction to prove that the Quicksort algorithm we saw in class is correct.

2. A Quicksort Promise!

Recall that Quicksort had the recurrence relation

T (1) = cT (n) = T (a− 1) + T (n− a) + cn

where a depends upon what value the pivot element has. Describe how Quicksort can
be modified slightly to choose a different pivot so that the worst-case running time now
becomes O(n log n) and carefully explain how this changes the recurrence relation so
that O(n log n) results.

3. Divide-n-Conquer!

Professor Hugh G. Messe has a recurrence relation that looks like:

T (n) = aT (
n

b
) + cn

where T (1) = c and a and b are positive integers such that a > b.

(a) Use the recurrence tree method to find a closed-form solution for the recurrence
relation under the assumption that a > b. You may assume that n is some power
of a particular integer. Show the details of your work! Don’t skip steps in your
analysis! Conclude by giving an asymptotic (Big-Oh) expression for T (n) in the
simplest form possible.

(b) Does your analysis apply if a = b? If so, explain briefly. If not, what step of your
analysis breaks down when a = b?

4. Marxsort! Professors Groucho, Chico, and Harpo of the Massachusetts Institute of
Typography have been developing their own fast sorting algorithms.

(a) Professor Groucho tells his colleagues that, under the assumption that a number
can be converted from one base to any other in constant time, he has discovered
a way to sort n integers in the range 1 to n2 in O(n) time. Explain how this can
be done. Why doesn’t Counting sort work here? (Go back and make sure you are
completely happy with how Counting sort and Radix sort work and how much
time they take.)

3



(b) Professor Chico announces that under the same base conversion assumption, he
can sort n integers in the range 1 to nk in O(n) time for any fixed constant k.
Explain how this too can be done.

(c) Professor Harpo is very excited! “We should be able to sort n integers in any
range in O(n) time,” he mimes. Explain why the Groucho-Chico trick doesn’t
generalize as Professor Harpo suggests.

5. Merge Lower Bounds!

The problem of merging two sorted lists arises frequently. For example, it is used as a
subroutine in Mergesort. One reasonable implementation of Merge (c.f. CLR pg. 29)
is Θ(n).

In this problem, you will show that there is a lower bound of 2 ·n−1 on the worst-case
number of comparisons required to merge 2 sorted lists, each containing n items.

First, you will show that there are 2 · n− o(n) comparisons as follows:

(a) Show that, given 2 · n numbers, there are (
2n
n) possible ways to divide them into

two sorted lists, each with n numbers.

(b) Using a decision tree, show that any algorithm that correctly merges two sorted
lists uses at least 2 ·n−o(n) operations. Note: One of the tricks with this problem
is that care needs to be made in coming up with useful lower-bound assumptions—
if you’re “too sloppy” you can come up with useless results (e.g. T (n) ≥ some
negative number).

6. Sorting Variable-Length Items

Solve Exercise 8.3 of Cormen et al. second edition (page 179).

7. Hurts Car Rental!

Hurts Car Rental is experimenting with a new type of vehicle. These vehicles use
a modular fuel pack which allows the vehicle to travel exactly 100 miles. (The fuel
is believed to consist of a mixture of pulverized Spam, Mountain Dew, and Cheetos,
although the technology is proprietary and this is just speculation.) When the car
needs to be refueled, the fuel pack is removed from the car and is replaced by a new
one. Thus, it is possible that a fuel pack will be replaced before it is completely used
up. Moreover, the driver gets no credit for the remaining fuel in the fuel pack and can
only purchase a new fully charged 100 mile pack.

A driver may wish to travel on a long freeway from one point to another. Since only
designated service stations sell the fuel packs, the driver needs to plan carefully where
to refuel. Moreover, each service station charges a different amount for a fuel pack.
Some drivers also don’t want to stop very often to refuel. Consequently, these vehicles
have a dial on the dashboard called the α dial. By turning the dial, the driver sets
a value of α between 0 and 1. By doing so, the driver stipulates that she wishes to

4



minimize the quantity αS + (1−α)C where S is the number of fuel stops made and C
is the total cost paid for the fuel packs. Notice that when α is set to 0, the objective
becomes that of minimizing the total cost paid for the fuel packs. When α is set
to 1, the objective becomes that of minimizing the number of stops. When α is set
somewhere between 0 and 1, the objective is a linear combination of these.

Consider a highway represented by a line segment. Let p1, p2, . . . , pn be n points on
the line segment sorted from left to right where p1 is the starting point, pn is the
destination point, and each of these points has a service station selling fuel packs. Let
di be the distance from point p1 to point pi, for 1 ≤ i ≤ n. Let ci be the cost of a fuel
pack at the station at point pi.

(a) Professor I. Lai claims that the following greedy algorithm minimizes the total
cost when α = 0: Buy a fuel pack at p1 (we have no choice there - we need fuel to
depart on the trip). Travel to the furthest point which is at most 100 miles away.
Purchase a fuel pack there. Now repeat this process of traveling as far as possible
on the current fuel pack before purchasing a new fuel pack. Explain briefly why
this approach does not guarantee an optimal solution when α = 0.

(b) Assume that a given value of α has been established by the driver. Give pseudo-
code for a recursive algorithm called optimize([p1, p2, p3, . . . , pj], pk) which re-
turns the minimum value of αS + (1 − α)C for a trip from p1 to pk with fuel
stops permitted at any of the consecutive service stations between p1 and pj. You
should assume that j < k. Moreover, we must always purchase a fuel pack at p1

to start the trip and this counts as one fuel stop. (Notice that once you’ve written
this function, we can call it with optimize([p1, . . . , pn−1], pn) to get our desired
solution!)

Your pseudo-code will need to use the 100 mile travel limit per fuel pack and will
need to refer to the di values which give the distances from p1 to pi and the ci

values which specify the cost of a fuel pack at point pi. Finally, if there is no
possible way to get from p1 to pk due to the distances between the given fuel
stations, the function should return the value ∞.

(c) Describe how your algorithm could be converted into a dynamic programming
algorithm. In particular:

i. Describe what the dynamic programming table looks like and its dimensions.

ii. Describe the order in which the cells in the table are filled in and the rule
used to fill in each cell. Be sure to explain how to fill in the “easy” cells at
the beginning as well as the rule for filling in the other cells.

(d) What is the running time of your dynamic programming algorithm? Explain very
briefly.

5


