On IO-Efficient Viewshed Algorithms and Their Accuracy

Herman Haverkort1 Laura Toma2 Bob PoFang Wei2

1Eindhoven University of Technology, the Netherlands
2Bowdoin College, USA

ACM SIGSPATIAL GIS 2013
November 2013, Orlando, FL
The problem

- Terrain T and viewpoint v
- Compute viewshed of v: set of points in T visible from v

Applications:
- path planning, navigation, placement of radar towers, etc
Terrains

- Most commonly represented as grids of elevation values
Large amounts of data have become available

- NASA SRTM: 30m resolution data for entire globe (∼10TB)
- LIDAR data: sub-meter resolution
- E.g.: Washington State, 1m grid: ∼689GB

Traditional (internal memory) algorithms

- Assume all data fits in memory

Big data ➔ IO-bottleneck

- Main memory too small to hold all data
- Data (partially) on disk
- Hard disks are ∼1,000,000 slower than memory
IO complexity: the number of IOs
Goal: minimize (CPU- and) IO-complexity

Basic building blocks and bounds:
- \(\text{scan}(n) = \Theta\left(\frac{n}{B}\right)\) IOs
- \(\text{sort}(n) = \Theta\left(\frac{N}{B} \log_{M/B}\right)\frac{n}{B}\) IOs
Visibility on Grids

Need to interpolate elevation along the line-of-sight (LOS) vp
Basic viewshed algorithm

Input: elevation grid
Output: visibility grid, each point marked visible/invisible

For each p in grid
- compute intersections between vp and grid lines
- if all these points are below vp then p is visible
Basic viewshed algorithm

Input: elevation grid
Output: visibility grid, each point marked visible/invisible

- For each p in grid
 - compute intersections between vp and grid lines
 - if all these points are below vp then p is visible
Basic viewshed algorithm

Input: elevation grid
Output: visibility grid, each point marked visible/invisible

For each \(p \) in grid
- compute intersections between \(vp \) and grid lines
- if all these points are below \(vp \) then \(p \) is visible

Assume grid of \(n \) points \((\sqrt{n} \times \sqrt{n})\)
Running time: \(O(n\sqrt{n}) \)
Related work

In memory:
- R3 algorithm: \(O(n\sqrt{n})\) time [Franklin & Ray ’94]
 - produces “exact” viewshed
 - slow
- XDraw, R2: \(O(n)\) time [Franklin & Ray ’94]:
 - approximations to R3
- Radial sweep: \(O(n \lg n)\) time [Van Kreveld ’96]
 - nearest neighbor interpolation

IO-efficient:
- Ferreira et al 2012: \(O(\text{sort}(n))\) IOs based on R2
- Fishman et al 2009: \(O(\text{sort}(n))\) IOs based on Van Kreveld
Accuracy!!

with ioradial from Fishman et al 2009

with GRASS
Our results

- An improved and IO-efficient version of the “exact” algorithm
 - gridlines vs. layers model
 - iterative vs. divide-and-conquer

- Horizons on grids have worst-case complexity $O(n)$
 - improves on $O(n^{\alpha}(n))$

- Running time and accuracy analysis
 - accuracy metric
 - compare with Van Kreveld’s model, R2, r.los in GRASS
Gridlines vs Layers Model

Grid model

Layers model:
- consider a subset of the obstacles in the grid model
- larger viewshed
Iterative viewshed (Layers model)

Traverse the grid in layers
Maintain the horizon of the region traversed so far
Algorithm \texttt{Vis-ITER}:

create grid V and initialize as all invisible

$H \leftarrow \emptyset$

for each layer l in the grid do

\hspace{1cm} //traverse layer l in ccw order

\hspace{1cm} for $r \leftarrow 0$ to $-l$ //first octant

\hspace{2cm} get elevation Z_{rl} of $p(r, l)$

\hspace{2cm} determine if Z_{rl} is above H

\hspace{2cm} if visible, set value V_{rl} in V as visible

\hspace{2cm} $h \leftarrow$ projection of $p(r - 1, l)p(r, l)$

\hspace{2cm} merge h into horizon H
Iterative viewshed (Layers model)

Algorithm Vis-ITER:

create grid V and initialize as all invisible
$H \leftarrow \emptyset$

for each layer l in the grid do

 //traverse layer l in ccw order

 for $r \leftarrow 0$ to $-l$ //first octant

 get elevation Z_{rl} of $p(r, l)$

 determine if Z_{rl} is above H

 if visible, set value V_{rl} in V as visible

 $h \leftarrow$ projection of $p(r-1, l)p(r, l)$

 merge h into horizon H

Denote $H_{1,i}$: horizon of points in layers $L_1 \cup ... \cup L_i$

After finishing L_i, H is $H_{1,i}$:
Iterative viewshed (Layers model)

Vis-Iter runs in
\[O(n + |H_{1,1}| + |H_{1,2}| + |H_{1,3}| + \ldots) = O(n + \sum_{i=1}^{\infty} |H_{1,i}|) \text{ time} \]
Split the elevation grid into bands around v and compute visibility one band at a time.
IO-efficient approach

1. **Build elevation bands** E_k
 for each (i, j) in grid:
 - $k \leftarrow$ band containing (i, j)
 - append Z_{ij} to E_k

2. **Compute visibility in each band**
 for $k = 1$ to N_{bands}:
 - load E_k into memory
 - traverse it one layer at a time, writing visibility values to V_k

3. **Collect visibility bands** V_k
 for each (i, j) in grid:
 - $k \leftarrow$ band containing (i, j)
 - read V_{ij} from V_k and write it to V

E_k and V_k are stored in row-major order \Rightarrow Step 1 writes E_k
sequentially and Step 3 reads V_k sequentially.
IO-efficient approach

1. **Build elevation bands** E_k for each (i, j) in grid:
 - $k \leftarrow$ band containing (i, j)
 - append Z_{ij} to E_k

2. **Compute visibility in each band** for $k = 1$ to N_{bands}:
 - load E_k into memory
 - traverse it one layer at a time, writing visibility values to V_k

3. **Collect visibility bands** V_k for each (i, j) in grid:
 - $k \leftarrow$ band containing (i, j)
 - read V_{ij} from V_k and write it to V

If $n = O(M^2 / B)$: Step 1 and Step 3 take one sequential pass.
IO-efficient approach

1. **Build elevation bands** E_k for each (i,j) in grid:
 - $k \leftarrow$ band containing (i,j)
 - append Z_{ij} to E_k

2. **Compute visibility in each band** for $k = 1$ to N_{bands}:
 - load E_k into memory
 - traverse it one layer at a time, writing visibility values to V_k

3. **Collect visibility bands** V_k for each (i,j) in grid:
 - $k \leftarrow$ band containing (i,j)
 - read V_{ij} from V_k and write it to V

Step 2 takes $\text{scan}(n) + \text{scan}(|H_{1,1}| + |H_{1,2}| + \ldots))$ IOs.
Notation:
- $H_{1,l}$: horizon of points in the first l layers
- $H_{tot} = |H_{1,1}| + |H_{1,2}| + ...$

In general, we have:
- $O(n \log n + H_{tot})$ time and $O(\text{sort}(n) + \text{scan}(H_{tot}))$ IOs provided that $n < cM^2$ for a sufficiently small c.

In practice, $H_{1,l}$ fit in memory and $n = O(M^2/B)$:
- $O(\text{scan}(n))$ IOs (3 passes over the grid)
Idea: Instead of merging the layers one at a time, use divide-and-conquer.

Algorithm $\text{DAC-BAND}(E_k, V_k, i, j)$:

- **if** $i == j$
 - $h \leftarrow \text{compute-layer-horizon}(i)$
 - return h
- **else**
 - $m \leftarrow \text{middle layer between } i \text{ and } j$
 - $h_1 \leftarrow \text{DAC-BAND}(E_k, V_k, i, m)$
 - $h_2 \leftarrow \text{DAC-BAND}(E_k, V_k, m+1, j)$
 - mark invisible all points in $L_{m+1,j}$ that fall below h_1
 - $h \leftarrow \text{merge}(h_1, h_2)$
 - return h
Notation:

- $H_{1,i}^B$: horizon of points in the first i bands.
- $H_{tot}^B = |H_{1,1}^B| + H_{1,2}^B + \ldots$.

In general,

- $O(n \lg n + H_{tot}^B)$ time and $O(\text{sort}(n) + \text{scan}(H_{tot}^B))$ IOs provided that $n < cM^2$ for a sufficiently small c.

In practice, $H_{1,i}^B$ fit in memory and $n = O(M^2/B)$:

- $O(\text{scan}(n))$ IOs (3 passes over the grid)
Iterative vs. Divide-and-Conquer

Worst-case complexity of horizon: $O(n^\alpha(n))$

Theorem

Let S be a set of line segments in the plane, such that the widths of the segments of S do not differ in length by more than a factor d, then the upper envelope of S has complexity $O(dn)$.

\Rightarrow Worst-case complexity of horizon: $O(n)$

In the worst-case: $|H_{tot}| = O(n\sqrt{n})$, $|H_{tot}^B| = O(n^2/M)$

In the worst case, handling horizons dominate and DAC < ITER

If horizons are small: ITER may be faster
Gridlines model

\[H(L_i) + H(X_i) \]
Experimental analysis

Platform:
- HP 220 blade servers, Intel 2.8GHz
- 512MB RAM
- 5400rpm SATA hard drive

Datasets:

<table>
<thead>
<tr>
<th>Dataset</th>
<th>cols × rows</th>
<th>GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumberlands</td>
<td>8 704 × 7 673</td>
<td>0.25</td>
</tr>
<tr>
<td>Washington</td>
<td>31 866 × 33 454</td>
<td>3.97</td>
</tr>
<tr>
<td>SRTM1-region03</td>
<td>50 401 × 43 201</td>
<td>8.11</td>
</tr>
<tr>
<td>SRTM1-region04</td>
<td>82 801 × 36 001</td>
<td>11.10</td>
</tr>
<tr>
<td>SRTM1-region06</td>
<td>68 401 × 111 601</td>
<td>28.44</td>
</tr>
</tbody>
</table>

On IO-Efficient Viewshed Algorithms and Their Accuracy
ITER is consistently 10-20% faster than DAC
Horizon Size

H_i: horizon of layer i, $|H_i| = O(i)$

$H_{1,i}$: horizon of first i layers, $|H_{1,i}| = O(i^2)$

$H_{1,i}$ stays very small, way below its worst-case bound. All SRTM datasets have $|H_{1,\sqrt{n}}|$ between 132 and 32,689.
For a dataset and a viewpoint, denote $H_{1,O(\sqrt{n})}$ its final horizon.

Worst-case bound: $O(n)$

Stays below $O(\sqrt{n})$
Lots of variation (due to position of viewpoint, shape of grid)
Running time

- Build-Bands, Collect-Bands run in one pass over the data.
- 75% of running time spent in reading or writing bands, 25% in computing visibility.
- Compared to previous work:
 - approx. as fast as IO-CENTRIFUGAL in [Fishman et al 2009]
 - approx. 2x faster than IO-RADIAL in [Fishman et al 2009]
 - approx. 2.5x slower than TILEDVS in [Ferreira et al 2012]

BUT, IO-CENTRIFUGAL, IO-RADIAL and TILEDVS compute different viewshed approximations.
Ideally, need ground truth

Given viewshed algorithms A (reference) and B:
- Pick a sample of viewpoints X
- For each viewpoint $v \in X$
 - compute viewshed(v) with A and B
 - compute f_v (number of false visibles) and f_i (number of false invisibles) of B wrt A, as percentage of viewshed size
- average over X

Select X from the set of points with topological significance (ridges and channels)
Reference algorithm: r.los in GRASS

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>fv</th>
<th>fi</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITER-LAYERS</td>
<td>.2%</td>
<td>.4%</td>
</tr>
<tr>
<td>IO-RADIAL</td>
<td>53%</td>
<td>14%</td>
</tr>
<tr>
<td>IO-CENTRIFUGAL</td>
<td>8%</td>
<td>33%</td>
</tr>
<tr>
<td>TILEDVS</td>
<td>7%</td>
<td>7%</td>
</tr>
</tbody>
</table>

ITER-LAYERS vs ITER-GRIDLINES:

\[fv = 0, \, fi = .2%\]
Conclusions

- Scalable algorithms for computing the viewshed that fully exploit the resolution of the data
- Layers model is simpler, faster and computes practically the same viewshed as the gridlines model
- Horizons on grids are small, far below worst-case bound ⇒ horizon-based approaches promising
- Accuracy important when comparing viewshed algorithms

Thank you!