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Graph Problems
• Graph G = (V, E) with V vertices and E edges

– DAG: directed acyclic graph
– G is planar if it can be drawn in the plane so no edges cross

• Some fundamental problems:
– BFS, DFS
– Single-source shortest path (SSSP)
– Topological order of a DAG

• A labeling of vertices such that
if (v,u) in E then µ(v)< µ(u)
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Massive graphs
• Massive planar graphs appear frequently in GIS

– Terrains are stored as grids or triangulations
– Example: modeling flow on terrain

• Each point is assigned a flow direction such that the resulting
graph is directed and acyclic

• To trace the amount of flow must topologically sort this graph

• Massive graphs stored on disk
– Assume edge-list representation stored on disk

• I/O can be severe bottleneck

Adj(v1)   Adj(v2)   Adj(v3)
…G
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• Parameters:
N = V+E
B = disk block size
M = memory size

• I/O-operation:
– movement of one block of data from/to disk

• Fundamental bounds:

• In practice B and M are big

  I/O Model [AV’88]
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Sorting:    sort(N) =                           I/Os
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Previous Results
• Lower bound:                                (practically sort(V))
• Not matched for most general graph problems, e.g.

– General undirected graphs
• BFS:                                                          [MM’02]

• SSSP:                                                        [MZ’03]

• DFS:                                                          [KS’96]

– General directed graphs
• BFS, DFS, SSSP, topological order (DAG)
                                                                     [BVWB’00]

         
• Sparse graphs E=O(V)

–   Directed BFS, DFS, SSSP: O(V) I/Os
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Previous Results
• Improved algorithms for special classes of (sparse) graphs

– Planar undirected graphs solved using
• O(sort(N)) reductions

• O(sort(N)) multi-way separation algorithm [MZ’02]

– Generalized to planar directed graphs
• BFS, SSSP: O(sort(N)) [ATZ’03]
• DFS: O(sort(N) log N)  [AZ’03]
• Planar DAG topological sort : O(sort(N))  [ATZ’03]

– Computed using a DED of the dual graph

Multi-way SSSPBFSDFS separation
[ABT01] [ABT01][AMTZ01]
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Our Results
• Simplified algorithms for planar DAGs

     O(scan(N)) I/Os
separation ============> top order, BFS, SSSP

• This does not improve the O(sort(N)) known upper bound since
computing the separation takes O(sort(N)) I//Os

• Previous algorithms take O(sort(N)) even if separation is given
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Planar graph separation:
R-partition

• A partition of a planar graph using a set S of separator vertices into
subgraphs (clusters) of at most R vertices each such that:

separators vertices in total
                                          

Each cluster is adjacent to            
separator vertices

• In external memory choose R = B2

– O(N/B) separator vertices
– O(N/B2) clusters,  O(B2) vertices each and O(B) boundary vertices
– Can be computed in O(sor(N)) I/Os [MZ’02]
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Planar SSSP
1. Compute a B2-partition of G
2. Construct a substitute graph GR on the

separator vertices such that it preserves SP
in G between any u,v in S
– replace each subgraph Gi with a complete

graph on boundary of Gi

– for any u, v on boundary of Gi, the weight
of edge (u,v) is δGi(u,v)

3. Solve SSSP on GR

4. Find SSSP to vertices inside clusters

Computed efficiently using
• GR has O(N/B) vertices and  O(N) edges
• Properties of the B2-partition
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A Topological Sort Algorithm
• Compute indegree of each vertex
• Maintain list Z of indegree-zero vertices
• Repeatedly

– Number an indegree-zero vertex v
– Consider all edges (v,u)
   and decrement indegree of u
– If indegree(u)  becomes 0

insert u in list Z

• O(1) I/O per edge ==> O(N) I/Os

v
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Topological Sort
using B2-partition

1. Construct  a substitute graph GR using B2-partition
– edge from v to u on boundary of Gi
     iff exists path from v to u in Gi

• Lemma: for any separator vertices u,v
if u is reachable from v in G, then u is
reachable from v in GR

2. Topologically sort GR (separator vertices in G)

• Lemma: A topological order on GR  is a topological order on G.

3.  Compute topological order inside clusters

B2
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Topological Sort
using B2-partition

• Problem:
– Not clear how to incorporate

removed vertices from G in
topological order of separator
vertices (GR)

• Solution (assuming only one in-degree zero vertex s for
simplicity):
– Longest-path-from-s order is a topological order
– Longest paths to removed vertices

locally computable from longest-paths
to boundary vertices
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Topological Sort
using B2-partition

1. Construct  substitute graph GR

– Weight of edge between v and u on boundary of  Gi equal to length of
longest path from v to u in Gi

2. Topologically sort GR

3. Compute longest path to each vertex in GR (same as in G):
– Maintain list L of longest paths seen to each vertex
– Repeatedly:

• Obtain longest path for the next vertex v
in topological order

• Consider all edges (v,u) and
update longest path to u in L

4. Find longest path to vertices inside clusters

v
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Longest path
to vertices inside a cluster

• must cross the boundary of the cluster

LP(v) = max u ∈ Bnd(Gi)  {LP(u) + LPGi (u,v)}
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Analysis
Topologically sort GR

• Maintain a list L with the indegree of each vertex
• Maintain list Z of indegree-zero vertices
• Repeatedly

– Number an indegree-zero vertex v from Z
– Consider all edges (v,u) and decrement indegree of u in L
– If indegree(u)  becomes 0 insert u in list Z

• GR has O(N/B) vertices and  O(N/B2 x B2) = O(N) edges
• Each vertex: access its adjacency list ==> O(N/B) I/Os
• Each edge (v,u): update L  ==> O(N) I/Os

– Can be reduced to O(N/B) using boundary set property

v
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Analysis
• Boundary set in the B2-partition

(Maximal) set of separator vertices adjacent to the same clusters
– A boundary set is of size O(B)
– There are O(N/B2) boundary sets [F’87]

(ass. bounded degree)

• We store L so that vertices in the same boundary set are consecutive
– Vertices in same boundary set have same O(B) neighbors in GR

– Each boundary set is accessed once by each neighbor  in GR

– Each boundary set has size O(B)

 O(N/B2) x O(B) = O(N/B) I/Os
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Conclusion and Open Problems
• Given a B2-partition topological order can be computed in

O(scan)N)) I/Os

• Longest path idea can also be used to compute SSSP and
BFS in the same bound

• Open problems:
– Improved DFS on DAGs? (exploiting acyclicity)

• Planar directed DFS O(sort(N) log N)
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Analysis
 Compute longest path to each vertex in GR (same as in G):

– Maintain list L’ of longest paths seen to each vertex
– Repeatedly:

• Obtain longest path for next
vertex v in topological order

• Consider all edges (v,u) and
update longest path to u

 
• We store L’ so that vertices in the same boundary set are

consecutive
– Vertices in same boundary set have same O(B) neighbors in GR

– Each boundary set is accessed once by each neighbor  in GR

– Each boundary set has size O(B)

 O(N/B2) x O(B) = O(N/B) I/Os

v


