Simplified External Memory Algorithms for Planar DAGs

Lars Arge Duke University Laura Toma Bowdoin College

July 2004

Graph Problems

- Graph G = (V, E) with V vertices and E edges
 - DAG: directed acyclic graph
 - G is planar if it can be drawn in the plane so no edges cross
- Some fundamental problems:
 - BFS, DFS
 - Single-source shortest path (SSSP)
 - Topological order of a DAG
 - A labeling of vertices such that if (v,u) in E then $\mu(v) < \mu(u)$

Massive graphs

- Massive planar graphs appear frequently in GIS
 - Terrains are stored as grids or triangulations
 - Example: modeling flow on terrain
 - Each point is assigned a flow direction such that the resulting graph is directed and acyclic
 - To trace the amount of flow must topologically sort this graph
- Massive graphs stored on disk
 - Assume edge-list representation stored on disk

• I/O can be severe bottleneck

I/O Model [AV'88]

- Parameters:
 - N = V + E
 - B = disk block size
 - M = memory size
- I/O-operation:
 - movement of one block of data from/to disk
 - Fundamental bounds: Scanning: $scan(N) = O(\frac{N}{B})$ I/Os Sorting: $sort(N) = O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/Os
- In practice B and M are big $\frac{N}{B} < \frac{N}{B} \log_{M/B} \frac{N}{B} << N$

Previous Results

- Lower bound: $\Omega(\min\{V, \operatorname{sort}(V)\})$ (practically sort(V))
- Not matched for most general graph problems, e.g.
 - General undir<u>ected</u> graphs

• BFS:
$$O(\sqrt{\frac{VE}{B} + \text{sort}(E)})$$
 [MM'02]
• SSSP: $O(\sqrt{\frac{VE}{B} \log \frac{W}{W}} + \text{sort}(E))$ [MZ'03]
• DFS: $O((V + \frac{E}{B}) \log V + \text{sort}(E))$ [KS'96]

- General directed graphs
 - BFS, DFS, SSSP, topological order (DAG) $O((V + \frac{E}{B}) \log V + \text{sort}(E))$ [BVWB'00]
- Sparse graphs E=O(V)
 - Directed BFS, DFS, SSSP: O(V) I/Os

Previous Results

- Improved algorithms for special classes of (sparse) graphs
 - Planar undirected graphs solved using
 - *O*(sort(*N*)) reductions

- *O*(sort(*N*)) multi-way separation algorithm [MZ'02]
- Generalized to planar directed graphs
 - BFS, SSSP: *O*(sort(*N*)) [ATZ'03]
 - DFS: *O*(sort(*N*) log *N*) [AZ'03]
 - Planar DAG topological sort : O(sort(N)) [ATZ'03]
 - Computed using a DED of the dual graph

Our Results

• Simplified algorithms for planar DAGs

O(scan(N)) I/Os separation ======> top order, BFS, SSSP

- This does not improve the O(sort(N)) known upper bound since computing the separation takes O(sort(N)) I//Os
- Previous algorithms take O(sort(N)) even if separation is given

Planar graph separation: R-partition

• A partition of a planar graph using a set *S* of separator vertices into $O(\frac{N}{R})$ subgraphs (clusters) of at most *R* vertices each such that:

 $O(\frac{N}{\sqrt{R}})$ separators vertices in total

Each cluster is adjacent to $O(\sqrt{R})$ separator vertices

- In external memory choose $R = B^2$
 - O(N/B) separator vertices
 - $O(N/B^2)$ clusters, $O(B^2)$ vertices each and O(B) boundary vertices
 - Can be computed in O(sor(N)) I/Os [MZ'02]

Planar SSSP

- 1. Compute a B^2 -partition of G
- 2. Construct a substitute graph G^R on the separator vertices such that it preserves SP in *G* between any u, v in *S*
 - replace each subgraph G_i with a complete graph on boundary of G_i
 - for any u, v on boundary of G_i , the weight of edge (u,v) is $\delta_{Gi}(u,v)$
- 3. Solve SSSP on G^R
- 4. Find SSSP to vertices inside clusters

Computed efficiently using

- G^R has O(N/B) vertices and O(N) edges
- Properties of the B^2 -partition

A Topological Sort Algorithm

- Compute indegree of each vertex
- Maintain list Z of indegree-zero vertices
- Repeatedly
 - Number an indegree-zero vertex v
 - Consider all edges (v,u)
 and decrement indegree of u
 - If indegree(u) becomes 0 insert u in list Z

• O(1) I/O per edge ==> O(N) I/Os

Topological Sort using *B*²-partition

- 1. Construct a substitute graph G^R using B^2 -partition
 - edge from v to u on boundary of G_i iff exists path from v to u in G_i
- Lemma: for any separator vertices u,v if u is reachable from v in G, then u is reachable from v in G^R

- **2. Topologically sort** G^{R} (separator vertices in G)
- Lemma: A topological order on G^R is a topological order on G.
- 3. Compute topological order inside clusters

Topological Sort using *B*²-partition

- Problem:
 - Not clear how to incorporate removed vertices from *G* in topological order of separator vertices (*G^R*)

- Solution (assuming only one in-degree zero vertex *s* for simplicity):
 - Longest-path-from-s order is a topological order
 - Longest paths to removed vertices
 locally computable from longest-paths
 to boundary vertices

Topological Sort using *B*²-partition

- 1. Construct substitute graph G^R
 - Weight of edge between v and u on boundary of G_i equal to length of longest path from v to u in G_i
- 2. Topologically sort G^R
- 3. Compute longest path to each vertex in G^R (same as in *G*):
 - Maintain list *L* of longest paths seen to each vertex
 - Repeatedly:
 - Obtain longest path for the next vertex v in topological order
 - Consider all edges (*v*,*u*) and update longest path to u in L

4. Find longest path to vertices inside clusters

Longest path to vertices inside a cluster

• must cross the boundary of the cluster

Topologically sort G^R

- Maintain a list L with the indegree of each vertex
- Maintain list Z of indegree-zero vertices
- Repeatedly
 - Number an indegree-zero vertex v from Z
 - Consider all edges (v,u) and decrement indegree of u in L
 - If indegree(u) becomes 0 insert u in list Z
- G^R has O(N/B) vertices and $O(N/B^2 \times B^2) = O(N)$ edges
- Each vertex: access its adjacency list ==> O(N/B) I/Os
- Each edge (v,u): update L => O(N) I/Os
 - Can be reduced to O(N/B) using boundary set property

• Boundary set in the B²-partition

(Maximal) set of separator vertices adjacent to the same clusters

- A boundary set is of size O(B)
- There are O(N/B²) boundary sets [F'87] (ass. bounded degree)

- We store L so that vertices in the same boundary set are consecutive
 - Vertices in same boundary set have same O(B) neighbors in G^R
 - Each boundary set is accessed once by each neighbor in G^R
 - Each boundary set has size O(B)
 - $\rightarrow O(N/B^2) \times O(B) = O(N/B)$ I/Os

Conclusion and Open Problems

- Given a B²-partition topological order can be computed in O(scan)N)) I/Os
- Longest path idea can also be used to compute SSSP and BFS in the same bound
- Open problems:
 - Improved DFS on DAGs? (exploiting acyclicity)
 - Planar directed DFS O(sort(N) log N)

Compute longest path to each vertex in G^R (same as in G):

- Maintain list L' of longest paths seen to each vertex
- Repeatedly:
 - Obtain longest path for next vertex *v* in topological order
 - Consider all edges (*v*,*u*) and update longest path to *u*

- We store L' so that vertices in the same boundary set are consecutive
 - Vertices in same boundary set have same O(B) neighbors in G^R
 - Each boundary set is accessed once by each neighbor in G^R
 - Each boundary set has size O(B)

 $\rightarrow O(N/B^2) \times O(B) = O(N/B)$ I/Os