
Laura Toma Simplified External memory Algorithms for Planar DAGs

Simplified External Memory
Algorithms for Planar DAGs

July 2004

Lars Arge Laura Toma

Duke University Bowdoin College

Laura Toma Simplified External memory Algorithms for Planar DAGs

Graph Problems
• Graph G = (V, E) with V vertices and E edges

– DAG: directed acyclic graph
– G is planar if it can be drawn in the plane so no edges cross

• Some fundamental problems:
– BFS, DFS
– Single-source shortest path (SSSP)
– Topological order of a DAG

• A labeling of vertices such that
if (v,u) in E then µ(v)< µ(u)

1

3

7 12

4

6

9

2

8

5

10

11

Laura Toma Simplified External memory Algorithms for Planar DAGs

Massive graphs
• Massive planar graphs appear frequently in GIS

– Terrains are stored as grids or triangulations
– Example: modeling flow on terrain

• Each point is assigned a flow direction such that the resulting
graph is directed and acyclic

• To trace the amount of flow must topologically sort this graph

• Massive graphs stored on disk
– Assume edge-list representation stored on disk

• I/O can be severe bottleneck

Adj(v1) Adj(v2) Adj(v3)
…G

Laura Toma Simplified External memory Algorithms for Planar DAGs

• Parameters:
N = V+E
B = disk block size
M = memory size

• I/O-operation:
– movement of one block of data from/to disk

• Fundamental bounds:

• In practice B and M are big

 I/O Model [AV’88]

M

 Block I/O

)log(
B
N

B
N

B
MO

NB
N

B
N

B
N

B
M <<< log

Sorting: sort(N) = I/Os

Scanning: scan(N) = I/Os)(
B
NO

Laura Toma Simplified External memory Algorithms for Planar DAGs

Previous Results
• Lower bound: (practically sort(V))
• Not matched for most general graph problems, e.g.

– General undirected graphs
• BFS: [MM’02]

• SSSP: [MZ’03]

• DFS: [KS’96]

– General directed graphs
• BFS, DFS, SSSP, topological order (DAG)
 [BVWB’00]

• Sparse graphs E=O(V)

– Directed BFS, DFS, SSSP: O(V) I/Os

))sort((E
B

VE
O +

))sort(log(E
w

W

B

VE
O +

))sort(log)((EV
B

E
VO ++

))sort(log)((EV
B

E
VO ++

)})(sort,(min{ VVΩ

Laura Toma Simplified External memory Algorithms for Planar DAGs

Previous Results
• Improved algorithms for special classes of (sparse) graphs

– Planar undirected graphs solved using
• O(sort(N)) reductions

• O(sort(N)) multi-way separation algorithm [MZ’02]

– Generalized to planar directed graphs
• BFS, SSSP: O(sort(N)) [ATZ’03]
• DFS: O(sort(N) log N) [AZ’03]
• Planar DAG topological sort : O(sort(N)) [ATZ’03]

– Computed using a DED of the dual graph

Multi-way SSSPBFSDFS separation
[ABT01] [ABT01][AMTZ01]

Laura Toma Simplified External memory Algorithms for Planar DAGs

Our Results
• Simplified algorithms for planar DAGs

 O(scan(N)) I/Os
separation ============> top order, BFS, SSSP

• This does not improve the O(sort(N)) known upper bound since
computing the separation takes O(sort(N)) I//Os

• Previous algorithms take O(sort(N)) even if separation is given

Laura Toma Simplified External memory Algorithms for Planar DAGs

Planar graph separation:
R-partition

• A partition of a planar graph using a set S of separator vertices into
subgraphs (clusters) of at most R vertices each such that:

separators vertices in total

Each cluster is adjacent to
separator vertices

• In external memory choose R = B2

– O(N/B) separator vertices
– O(N/B2) clusters, O(B2) vertices each and O(B) boundary vertices
– Can be computed in O(sor(N)) I/Os [MZ’02]

)(
R

N
O

)(RO

)(
R

N
OR

R
R

R

R
R

R

R

R

Laura Toma Simplified External memory Algorithms for Planar DAGs

Planar SSSP
1. Compute a B2-partition of G
2. Construct a substitute graph GR on the

separator vertices such that it preserves SP
in G between any u,v in S
– replace each subgraph Gi with a complete

graph on boundary of Gi

– for any u, v on boundary of Gi, the weight
of edge (u,v) is δGi(u,v)

3. Solve SSSP on GR

4. Find SSSP to vertices inside clusters

Computed efficiently using
• GR has O(N/B) vertices and O(N) edges
• Properties of the B2-partition

s

t

B2

Laura Toma Simplified External memory Algorithms for Planar DAGs

A Topological Sort Algorithm
• Compute indegree of each vertex
• Maintain list Z of indegree-zero vertices
• Repeatedly

– Number an indegree-zero vertex v
– Consider all edges (v,u)
 and decrement indegree of u
– If indegree(u) becomes 0

insert u in list Z

• O(1) I/O per edge ==> O(N) I/Os

v

Laura Toma Simplified External memory Algorithms for Planar DAGs

Topological Sort
using B2-partition

1. Construct a substitute graph GR using B2-partition
– edge from v to u on boundary of Gi
 iff exists path from v to u in Gi

• Lemma: for any separator vertices u,v
if u is reachable from v in G, then u is
reachable from v in GR

2. Topologically sort GR (separator vertices in G)

• Lemma: A topological order on GR is a topological order on G.

3. Compute topological order inside clusters

B2

Laura Toma Simplified External memory Algorithms for Planar DAGs

Topological Sort
using B2-partition

• Problem:
– Not clear how to incorporate

removed vertices from G in
topological order of separator
vertices (GR)

• Solution (assuming only one in-degree zero vertex s for
simplicity):
– Longest-path-from-s order is a topological order
– Longest paths to removed vertices

locally computable from longest-paths
to boundary vertices

1 2

34

5

B

F

CD
A

E

s

t
B2

Laura Toma Simplified External memory Algorithms for Planar DAGs

Topological Sort
using B2-partition

1. Construct substitute graph GR

– Weight of edge between v and u on boundary of Gi equal to length of
longest path from v to u in Gi

2. Topologically sort GR

3. Compute longest path to each vertex in GR (same as in G):
– Maintain list L of longest paths seen to each vertex
– Repeatedly:

• Obtain longest path for the next vertex v
in topological order

• Consider all edges (v,u) and
update longest path to u in L

4. Find longest path to vertices inside clusters

v

Laura Toma Simplified External memory Algorithms for Planar DAGs

Longest path
to vertices inside a cluster

• must cross the boundary of the cluster

LP(v) = max u ∈ Bnd(Gi) {LP(u) + LPGi (u,v)}

vs

Gj

_

u

Laura Toma Simplified External memory Algorithms for Planar DAGs

Analysis
Topologically sort GR

• Maintain a list L with the indegree of each vertex
• Maintain list Z of indegree-zero vertices
• Repeatedly

– Number an indegree-zero vertex v from Z
– Consider all edges (v,u) and decrement indegree of u in L
– If indegree(u) becomes 0 insert u in list Z

• GR has O(N/B) vertices and O(N/B2 x B2) = O(N) edges
• Each vertex: access its adjacency list ==> O(N/B) I/Os
• Each edge (v,u): update L ==> O(N) I/Os

– Can be reduced to O(N/B) using boundary set property

v

Laura Toma Simplified External memory Algorithms for Planar DAGs

Analysis
• Boundary set in the B2-partition

(Maximal) set of separator vertices adjacent to the same clusters
– A boundary set is of size O(B)
– There are O(N/B2) boundary sets [F’87]

(ass. bounded degree)

• We store L so that vertices in the same boundary set are consecutive
– Vertices in same boundary set have same O(B) neighbors in GR

– Each boundary set is accessed once by each neighbor in GR

– Each boundary set has size O(B)

 O(N/B2) x O(B) = O(N/B) I/Os

Laura Toma Simplified External memory Algorithms for Planar DAGs

Conclusion and Open Problems
• Given a B2-partition topological order can be computed in

O(scan)N)) I/Os

• Longest path idea can also be used to compute SSSP and
BFS in the same bound

• Open problems:
– Improved DFS on DAGs? (exploiting acyclicity)

• Planar directed DFS O(sort(N) log N)

Laura Toma Simplified External memory Algorithms for Planar DAGs

Analysis
 Compute longest path to each vertex in GR (same as in G):

– Maintain list L’ of longest paths seen to each vertex
– Repeatedly:

• Obtain longest path for next
vertex v in topological order

• Consider all edges (v,u) and
update longest path to u

• We store L’ so that vertices in the same boundary set are

consecutive
– Vertices in same boundary set have same O(B) neighbors in GR

– Each boundary set is accessed once by each neighbor in GR

– Each boundary set has size O(B)

 O(N/B2) x O(B) = O(N/B) I/Os

v

