Simplified External Memory Algorithms for Planar DAGs

Lars Arge
Duke University

Laura Toma
Bowdoin College

July 2004
Graph Problems

- Graph $G = (V, E)$ with V vertices and E edges
 - **DAG**: directed acyclic graph
 - G is **planar** if it can be drawn in the plane so no edges cross

- Some fundamental problems:
 - BFS, DFS
 - Single-source shortest path (SSSP)
 - Topological order of a DAG
 - A labeling of vertices such that if (v,u) in E then $\mu(v) < \mu(u)$
Massive graphs

- Massive planar graphs appear frequently in GIS
 - Terrains are stored as grids or triangulations
 - Example: modeling flow on terrain
 - Each point is assigned a flow direction such that the resulting graph is directed and acyclic
 - To trace the amount of flow must topologically sort this graph

- Massive graphs stored on disk
 - Assume edge-list representation stored on disk

- I/O can be severe bottleneck
I/O Model [AV’88]

- Parameters:
 \[N = V+E \]
 \[B = \text{disk block size} \]
 \[M = \text{memory size} \]

- I/O-operation:
 - movement of one block of data from/to disk

- Fundamental bounds:
 - \textbf{Scanning:} \(\text{scan}(N) = O\left(\frac{N}{B}\right) \) I/Os
 - \textbf{Sorting:} \(\text{sort}(N) = O\left(\frac{N}{B} \log_{\frac{M}{B}} \frac{N}{B}\right) \) I/Os

- In practice \(B \) and \(M \) are big
 \[\frac{N}{B} < \frac{N}{B} \log_{\frac{M}{B}} \frac{N}{B} \ll N \]
Previous Results

- **Lower bound:** $\Omega(\min\{V,\text{sort}(V)\})$ (practically sort(V))
- Not matched for most **general graph** problems, e.g.
 - **General undirected graphs**
 - BFS: $O\left(\sqrt{\frac{VE}{B}} + \text{sort}(E)\right)$ [MM’02]
 - SSSP: $O\left(\sqrt{\frac{VE}{B}} \frac{\log W}{w} + \text{sort}(E)\right)$ [MZ’03]
 - DFS: $O\left(((V + \frac{E}{B}) \log V + \text{sort}(E))\right)$ [KS’96]

 - **General directed graphs**
 - BFS, DFS, SSSP, topological order (DAG)
 $O\left(((V + \frac{E}{B}) \log V + \text{sort}(E))\right)$ [BVWB’00]

- **Sparse graphs** $E = O(V)$
 - Directed BFS, DFS, SSSP: $O(V)$ I/Os
Previous Results

- Improved algorithms for special classes of (sparse) graphs
 - Planar undirected graphs solved using
 - $O(\text{sort}(N))$ reductions
 - $O(\text{sort}(N))$ multi-way separation algorithm [MZ’02]

- Generalized to planar directed graphs
 - BFS, SSSP: $O(\text{sort}(N))$ [ATZ’03]
 - DFS: $O(\text{sort}(N) \log N)$ [AZ’03]
 - Planar DAG topological sort: $O(\text{sort}(N))$ [ATZ’03]
 - Computed using a DED of the dual graph
Our Results

• Simplified algorithms for planar DAGs

\[O(\text{scan}(N)) \text{ I/Os} \]
separation \(\Rightarrow \) top order, BFS, SSSP

• This does not improve the \(O(\text{sort}(N)) \) known upper bound since computing the separation takes \(O(\text{sort}(N)) \) I//Os

• Previous algorithms take \(O(\text{sort}(N)) \) even if separation is given
Planar graph separation: R-partition

- A partition of a planar graph using a set S of separator vertices into $O\left(\frac{N}{R}\right)$ subgraphs (clusters) of at most R vertices each such that:
 - $O\left(\frac{N}{\sqrt{R}}\right)$ separators vertices in total
 - Each cluster is adjacent to $O\left(\sqrt{R}\right)$ separator vertices

- In external memory choose $R = B^2$
 - $O(N/B)$ separator vertices
 - $O(N/B^2)$ clusters, $O(B^2)$ vertices each and $O(B)$ boundary vertices
 - Can be computed in $O(\text{sor}(N))$ I/Os [MZ’02]
Planar SSPP

1. Compute a B^2-partition of G

2. Construct a substitute graph G^R on the separator vertices such that it preserves SP in G between any u,v in S
 - replace each subgraph G_i with a complete graph on boundary of G_i
 - for any u,v on boundary of G_i, the weight of edge (u,v) is $\delta_{Gi}(u,v)$

3. Solve SSPP on G^R

4. Find SSPP to vertices inside clusters

Computed efficiently using

- G^R has $O(N/B)$ vertices and $O(N)$ edges
- Properties of the B^2-partition
A Topological Sort Algorithm

- Compute indegree of each vertex
- Maintain list Z of indegree-zero vertices
- Repeatedly
 - Number an indegree-zero vertex v
 - Consider all edges \((v, u)\)
 and decrement indegree of u
 - If indegree(u) becomes 0
 insert u in list Z

- \(O(1)\) I/O per edge \(\implies O(N)\) I/Os
Topological Sort using B^2-partition

1. Construct a substitute graph G^R using B^2-partition
 - edge from v to u on boundary of G_i
 iff exists path from v to u in G_i

 • Lemma: for any separator vertices u, v
 if u is reachable from v in G, then u is reachable from v in G^R

2. Topologically sort G^R (separator vertices in G)

 • Lemma: A topological order on G^R is a topological order on G.

3. Compute topological order inside clusters
Topological Sort using B^2-partition

• Problem:
 – Not clear how to incorporate removed vertices from G in topological order of separator vertices (G^R)

• Solution (assuming only one in-degree zero vertex s for simplicity):
 – Longest-path-from-s order is a topological order
 – Longest paths to removed vertices locally computable from longest-paths to boundary vertices
Topological Sort using B^2-partition

1. Construct substitute graph G^R
 - Weight of edge between v and u on boundary of G_i equal to length of longest path from v to u in G_i
2. Topologically sort G^R
3. Compute longest path to each vertex in G^R (same as in G):
 - Maintain list L of longest paths seen to each vertex
 - Repeatedly:
 • Obtain longest path for the next vertex v
 in topological order
 • Consider all edges (v,u) and
 update longest path to u in L
4. Find longest path to vertices inside clusters
Longest path to vertices inside a cluster

- must cross the boundary of the cluster

\[\text{LP}(v) = \max_{u \in \text{Bnd}(G_i)} \{ \text{LP}(u) + \text{LP}_{G_i}(u, v) \} \]
Analysis

Topologically sort G^R

- Maintain a list L with the indegree of each vertex
- Maintain list Z of indegree-zero vertices
- Repeatedly
 - Number an indegree-zero vertex v from Z
 - Consider all edges (v,u) and decrement indegree of u in L
 - If indegree(u) becomes 0 insert u in list Z

- G^R has $O(N/B)$ vertices and $O(N/B^2 \times B^2) = O(N)$ edges
- Each vertex: access its adjacency list $\implies O(N/B)$ I/Os
- Each edge (v,u): update L $\implies O(N)$ I/Os
 - Can be reduced to $O(N/B)$ using boundary set property
Analysis

• Boundary set in the B^2-partition
 (Maximal) set of separator vertices adjacent to the same clusters
 - A boundary set is of size $O(B)$
 - There are $O(N/B^2)$ boundary sets [F’87]
 (ass. bounded degree)

• We store L so that vertices in the same boundary set are consecutive
 - Vertices in same boundary set have same $O(B)$ neighbors in G^R
 - Each boundary set is accessed once by each neighbor in G^R
 - Each boundary set has size $O(B)$

$\Rightarrow O(N/B^2) \times O(B) = O(N/B)$ I/Os
Conclusion and Open Problems

- Given a B^2-partition topological order can be computed in $O(\text{scan}N))$ I/Os

- Longest path idea can also be used to compute SSSP and BFS in the same bound

- Open problems:
 - Improved DFS on DAGs? (exploiting acyclicity)
 - Planar directed DFS $O(\text{sort}(N) \log N)$
Analysis

Compute longest path to each vertex in G^R (same as in G):
- Maintain list L' of longest paths seen to each vertex
- Repeatedly:
 - Obtain longest path for next vertex v in topological order
 - Consider all edges (v, u) and update longest path to u

- We store L' so that vertices in the same boundary set are consecutive
 - Vertices in same boundary set have same $O(B)$ neighbors in G^R
 - Each boundary set is accessed once by each neighbor in G^R
 - Each boundary set has size $O(B)$

$\Rightarrow O(N/B^2) \times O(B) = O(N/B)$ I/Os