Ultrafast excited state relaxation in long-chain polyenes

Maria Rosa Antognazzaa,∗, Larry Lüerb,c, Dario Pollib, Ronald L. Christensend, Richard R. Schrocke, Guglielmo Lanzania,b, Giulio Cerullob

a Center for Nano Science and Technology of ITWPoliMI, via Pascoli 70/3, 20133 Milano, Italy
b National Laboratory for Ultrafast and Ultraintense Optical Science, CNR-INFM, Dipartimento di Fisica, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy
c Madrid Institute of Advanced Studies, IMDEA Nanociencia, Facultad de Ciencias, Av. Tomas y Valiente 7, 28049 Madrid, Spain
d Department of Chemistry, Bowdoin College, Brunswick, ME 04011, USA
e Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

\textbf{A R T I C L E I N F O}

Article history:
Received 20 October 2009
In final form 2 March 2010
Available online 7 March 2010

Keywords:
Polyenes
Carotenoids
Ultrafast spectroscopy
Triplet states

\textbf{A B S T R A C T}

We present a comprehensive study, by femtosecond pump–probe spectroscopy, of excited state dynamics in a polyene that approaches the infinite chain limit. By excitation with sub-10-fs pulses resonant with the 0–0 $S_0 \rightarrow S_1$ transition, we observe rapid loss of stimulated emission from the bright excited state S_2, followed by population of the hot S_1 state within 150 fs. Vibrational cooling of S_1 takes place within 500 fs and is followed by decay back to S_0 with 1 ps time constant. By excitation with excess vibrational energy we also observe the ultrafast formation of a long-living absorption, that is assigned to the triplet state generated by singlet fission.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The electronic properties of polyenes, linear chains of π-conjugated carbon atoms, are under extensive investigation since the 1950s. There are several reasons for this interest:

(i) They are simple systems suitable for detailed experimental and theoretical characterization, so that they are considered as test banks for advanced quantum chemical methods [1];
(ii) They are model compounds for the class of conjugated polymers, which are the focus of intense fundamental research due to their important technological impact [2];
(iii) They are model compound for the class of carotenoids, sharing with them the backbone of alternating single and double carbon bonds [3]. Carotenoids perform a number of functions in photosynthetic systems [4], among which the most important are photoprotection and light harvesting. The molecular mechanisms of such processes are ultimately determined by the energies and lifetimes of their low-lying excited electronic states.

The simplest approach to describe a linear conjugated chain, based on the observation that π-electrons have p orbitals overlapping along the backbone, is the free-electron model, that describes the electron as a one-dimensional “particle in a box”. This model properly predicts that the optical (HOMO–LUMO) band-gap shifts to lower energies for increasing conjugation length n (number of conjugated double bonds in the chain). However, it also predicts that linear chains are emitting (since the lowest energy electronic excited state is “bright”, i.e. optically allowed) and become metallic (i.e. with zero gap) for infinite chain length. Both assertions turn out to be wrong, particularly the second one which contrasts with the Peierls theorem [5]. An efficient correction is provided by the model suggested by Kuhn [6], which phenomenologically introduced a modulation of the potential in order to describe alternation in the bond lengths along the chain, leading to a chain-length dependence of the energy levels of the type $-A + B/n$. The predicted saturation of band-gap for the infinite chain limit is indeed observed experimentally. Yet the model again fails in predicting the correct ordering of the excited states, and consequently their ability to reemit light. It turns out that simple one-electron models cannot account for the photophysics of linear chains, but both electron correlation and electron–phonon coupling must be included. A well-known model, proposed in 1979 and including only electron–phonon interaction, predicted the existence of exotic excited states in long chains, named solitons (for a review see [7]). While the latter have never been definitively confirmed experimentally, this prediction certainly fostered a huge research activity. Inclusion of electron correlation not only allows to correctly predict the chain-length dependence of the energy levels, but also explains the lack of emission in many polyenes and carotenoids.

According to the C_2 point group symmetry, the first allowed optical transition in polyenes occurs from an $1A_g$ state (the
ground state S_0 to a B_u^* state. However, for all polyenes with $n > 3$, there is an additional "covalent" excited state of A_g^* symmetry with energy lower than the B_u^* state [8,9]. For this reason, the bright $1B_u^*$ state is called S_1, while the lower energy dark $2A_g^*$ state is known as S_2. The dark state acts as a sink for the excitation energy, so that the excited state dynamics of polyenes is characterized by very rapid energy relaxation processes. Following photoexcitation, deactivation of S_2 to S_0 occurs via an Internal Conversion (IC) process on the timescale of a few hundreds of femtoseconds [10–12]; S_1 then decays back to the ground state S_0 through another, slower, IC process, on the picosecond timescale [13].

An open issue of the photophysics of linear conjugated chains is understanding the chain-length dependence of the IC rates. The energy gap law for radiationless transitions in large molecules [14] predicts a transition rate $k \propto \exp(-\Delta E)$, where ΔE is the energy gap between the levels. According to this law, the IC rate should decrease with increasing energy gap between the converting levels. The gap law describes quite well the $S_1 \rightarrow S_0$ relaxation, since to $S_2 \rightarrow S_1$ gap shrinks for increasing conjugation length, leading to an increase of the IC rate, as experimentally observed [13]. Such simple description, however, fails for the $S_2 \rightarrow S_1$ relaxation process. Both theoretical and experimental results indicate that the $S_1 \rightarrow S_2$ gap increases with n, so that the IC rate, according to the gap law, is expected to decrease for increasing conjugation length. However, experiments using both fluorescence up-conversion [15] and transient absorption [16] showed a different behaviour. The S_2 lifetime was found to increase with n for short carotenoids ($5 \leq n \leq 9$), in accordance with the energy gap law; for $n > 9$, on the other hand, it was found to decrease with conjugation length. To explain this peculiar chain-length dependence the presence of additional excited singlet states besides the $1B_u^*$ has been invoked; such states (more specifically the $1B_u^*$ and $3A_g^*$ states) have been predicted theoretically [17,1]. It has been proposed that, for carotenoids with conjugation length $n > 9$, their energy lies within the S_1–S_2 gap and thus they become active, as intermediate states, in the $S_2 \rightarrow S_1$ IC process. However, their direct experimental observation is still controversial [18].

In addition to IC, another possible deactivation pathway for S_2 and S_1 is intersystem crossing (ISC) to the triplet manifold. In naturally occurring polyenes excited triplet states play a key role in vital photoprotective processes, by scavenging triplet excited states in (bacterio)chlorophylls and singlet oxygen. Only limited experimental data are available on the energy of triplet states in polyenes [19], due to an extremely low phosphorescence quantum yield, of the order of 10^{-4} to 10^{-5}. ISC through the usual spin-flip mechanism is expected to display a very low quantum yield, since the singlet excited state lifetime of carotenoids is very short. An alternative ISC pathway is singlet fission, i.e. spontaneous breaking of a singlet into two triplet states. Such process has been recently observed in carotenoids bound to BChls in antenna complexes [20,21] and in long polyacetylene chains [22].

The study of conjugation length dependence of the photophysics of polyenes has been both a tool and an object for research. Changing the conjugation length provides a set of data for better matching with theory, and it also shows how the system evolves from a molecular-like behaviour to the limit of a one-dimensional quantum confined solid. So far, however, spectroscopic studies on polyenes have been limited to molecules with no more than fifteen double bonds, essentially because of the lack of suitable synthesis methods. Some extrapolations from short-chain models have been used to predict properties and behaviour of the longest polyene compounds, but they have not been matched by a corresponding amount of experimental work.

In this work, we aim at filling this gap by studying a polyene that approaches the infinite chain limit, poly(diethyldipropargylmalonate, poly(DEDPM)) [23]. Previous investigations showed that a poly(DEDPM) solution contains a distribution of conjugation lengths, mainly dominated by the longer segments with a number of conjugated double bonds greater than 100. This system is ideal for studying the excited state dynamics of polyenes for the limiting case of infinite chain length. First this allows us to study the IC process in very long chains, and second it allows us to explore what happens in long chains when excess energy is provided to the excited states, possibly highlighting quasi-particles dynamics. In particular we want to verify the possibility that, for high n values, bound covalent states can undergo fission into triplet pairs, as predicted by theory [1].

2. Materials and methods

Poly(DEDPM) (molecular mass $\sim 4 \times 10^5$) was obtained by living cyclopolymerization of the monomer DEDPM, as described in detail in [23]; the number of conjugated carbon double bonds is in our case greater than 100, justifying the approximation of an infinitely-long chain. The absorption spectrum of poly(DEDPM) is shown in Fig. 1 together with the chemical structure of the molecule. It is broader and red-shifted with respect to naturally occurring carotenoids with shorter conjugation lengths (usually absorbing in the 400–500 nm region of the visible spectrum) and does not present any clear vibronic structure, due to conformational disorder of the chains. Previous work by Christensen et al. [24] demonstrated that these features are due to a distribution of polyene conjugation lengths, whose spectra are linearly superimposed: the shortest segments give rise to the tail at the highest energies, but the longest ones approach the infinite polyene limit. Poly(DEDPM) samples were dissolved in tetrahydrofuran (concentration of ~ 20 g/l); experiments were performed at room temperature and under atmospheric pressure.

We carried out pump–probe experiments using two different setups, both based on a regeneratively-amplified mode-locked Ti:sapphire laser, delivering pulses at 1.6-eV with 1-kHz repetition rate, 150-fs duration and 500-μJ energy. The first setup provides sub-10-fs time resolution with 10-ps scan range, while the second setup has a lower resolution (200-fs) but a longer scan range (up to 400 ps).

The first setup is based on a Non-collinear Optical Parametric Amplifier (NOPA) pumped by the Second Harmonic (SH) of Ti:sapphire and seeded by the White-Light Continuum (WLC) generated in a 1-mm-thick sapphire plate [25]. The NOPA produces ultra-bandwidth visible pulses with spectrum extending over the 1.8–

![Fig. 1. Absorption spectrum of polymer of poly(DEDPM) in Tetrahydrofuran solution. The chemical structure of the polymer is also shown. The shaded lines correspond to the two different pump pulses used.](image-url)
2.5 eV range, with energy up to 1 µJ, compressed by multiple bounces on dielectric chirped mirrors to nearly transform-limited ≈7-fs duration. As can be seen from Fig. 1, the NOPA spectrum is well matched to the low energy tail of the S₀ → S₁ transition of the polyyne. The NOPA pulses are sent to a degenerate pump–probe setup, based on a balanced Michelson interferometer and using a spherical mirror (f = 100 mm) to focus non-collinearly pump and probe pulses. After the sample, kept in a home-made cuvette with 200-µm fused silica windows and 200-µm pathlength, the probe pulses, spatially selected by an iris, are focused on the entrance slit of a spectrometer equipped with a fast photo-diode array, allowing recording the probe spectrum at the full 1 kHz laser repetition rate [26]. The pump beam is modulated at 500 Hz by a mechanical chopper with the frequency locked to the laser pulse train, to allow collection of probe spectra with and without excitation and to obtain 2D differential transmission (ΔT/ΔT*) maps as

\[ΔT/ΔT*(λ, τ) = T_{pump}(λ, τ) - T_{diff}(λ)/T_{pump}(λ), \]

where λ is the probe wavelength and τ the pump–probe delay. By averaging over 1000 consecutive laser shots, ΔT/ΔT* sensitivity better than 10⁻⁶ over the whole probe wavelength region can be reached.

In the second setup, the pump is provided by the SH of Ti:sapphire at 3.2 eV, with ~200-fs duration, and the probe is the WLC generated in a sapphire plate. The visible portion of the WLC, selectively selected by a short-pass filter and covering the 1.6–2.7 eV range, with energy up to 1 lJ, compressed by multiple bounces on dielectric chirped mirrors to nearly transform-limited [28–30] and has been attributed to vibrational relaxation of the hot S₁ state. Finally, Fig. 2c presents the ΔT/ΔT* map on a longer timescale (4 ps); here we observe the decay of the PA₁, PA₂ and PB bands, which is indicative of a relaxation of S₁ back to S₀. The observed time constant for this process is ≈1 ps (see also Fig. 3).

The time traces shown in Fig. 3a are clearly modulated by well-resolved oscillations. These correspond to vibrational wavepackets with ≈1195 cm⁻¹ and 1520 cm⁻¹ frequencies, due to single- and double-bond stretching of the carbon atoms, respectively. Such oscillations are ascribed to impulsive stimulated resonant Raman scattering in the ground electronic state and have been discussed in detail in Ref. [31].

The observed excited state relaxation dynamics is in agreement with the trend observed on shorter chain carotenoids [16]. The very fast decay of the positive ΔT/ΔT* signal observed within the first 50 fs is consistent with a very rapid depopulation of the photoexcited S₂ state; in this way the SE from S₂ is rapidly quenched, while the PB from S₁ is not observed. This is consistent with previous works on shorter chain carotenoids [32], where the PB from S₁ is not observed. The fast decay is also assigned to transitions from S₁ to an higher lying state S₃.

The observed photoinduced dynamics in poly(DEDPM) are reproduced by a numerical model, performing a global analysis based on a rate equation description of excited state dynamics [32], which completely reproduces time-dependent spectroscopic data with a strongly reduced set of parameters. The different states ∆s are connected via a sequential model according to the processes

\[S₃ → S₄ \rightarrow S₅ \rightarrow S₆ \rightarrow S₇, \]

where kᵢ is the transition rate. The number of states, and thus the resulting photophysical model, are selected by critically selecting S₃ state, and display an excellent agreement with the experimental data. We found that a minimum of four states was needed to correctly describe the observed ΔT/ΔT* spectra. The observed fits are shown in Fig. 2b, d, f and Fig. 3b, and display an excellent agreement with the experimental data.

In Fig. 4a, we give the species associated difference spectra (SADS) for the four excited states introduced in the model. The first SADS is strongly different from the others, in that it is dominated by the formation of the hot S₁ state. This is consistent with previous works on shorter chain carotenoids [32], where the PB from S₁ is not observed. The fast decay is also assigned to transitions from S₁ to an higher lying state S₃.

The observed photoinduced dynamics in poly(DEDPM) are reproduced by a numerical model, performing a global analysis based on a rate equation description of excited state dynamics [32], which completely reproduces time-dependent spectroscopic data with a strongly reduced set of parameters. The different states ∆s are connected via a sequential model according to the processes

\[S₃ → S₄ \rightarrow S₅ \rightarrow S₆ \rightarrow S₇, \]

where kᵢ is the transition rate. The number of states, and thus the resulting photophysical model, are selected by critically selecting the origin state, and display an excellent agreement with the experimental data. We found that a minimum of four states was needed to correctly describe the observed ΔT/ΔT* spectra. The observed fits are shown in Fig. 2b, d, f and Fig. 3b, and display an excellent agreement with the experimental data.

In Fig. 4a, we give the species associated difference spectra (SADS) for the four excited states introduced in the model. The first SADS is strongly different from the others, in that it is dominated by the formation of the hot S₁ state. This is consistent with previous works on shorter chain carotenoids [32], where the PB from S₁ is not observed. The fast decay is also assigned to transitions from S₁ to an higher lying state S₃.
by a negative cross-section feature around 2.0 eV with relatively narrow bandwidth. Since the pump spectrum is centred at higher energy (around 2.2 eV), and ground state absorption is weak at 2.0 eV, this negative cross-section should be associated with the (optically allowed) SE from the S_2 state to the ground state. We thus associate the S_2 state with the bright singlet state S_2. The second SADS s_2 still displays a negative cross-section, which is assigned to the PB of the S_0 \rightarrow S_2 transition; we tentatively assign this to the elusive intermediate state S_x. Finally, the last two SADS are characterized by a PB of the S_0 absorption, surrounded by two PA bands at lower (1.9 eV) and higher (2.5 eV) probe energies. They are assigned to the hot (s_3) and vibrationally relaxed (s_4) S_1 state. The relaxation rates extracted from the numerical model are reported in Table 1.

3.2. Ultrafast triplet formation

The previous paragraph shows that, upon resonant excitation of the long chains of the polyene, the \Delta T/T signal goes to zero at delays longer than 5 ps, indicating complete ground state recovery. It has been previously reported \cite{33} that excitation of carotenoids with excess energy leads to triplet states photogeneration. To test this mechanism in our polyene, we recorded transient absorption spectra using 200-fs pump pulses at 3.2 eV and WLC probing. As can be seen from Fig. 1, this pump frequency falls on the high-energy tail of the absorption spectrum. Therefore, in addition to providing excess vibrational energy to the longer chains, it also efficiently excites the shorter polyene chains, which have blue-shifted S_0 \rightarrow S_2 transition.

The 2D \Delta T/T(\lambda,\tau) map of poly[DEDPM], following excitation by a pulse at 3.2 eV, is shown in Fig. 5. With this experimental setup, the time resolution is too low to enable observation of the S_2 \rightarrow S_1 IC process, so that we immediately observe the PA_1 band arising from the S_1 \rightarrow S_2 transition. With respect to the experiments with resonant pumping of the long chains, we can make the following observations: (i) the PA_1 band extends to higher energies, up to 2.5 eV; (ii) the band displays a considerably longer lifetime, with transient signals observed up to 300 ps delay; (iii) the peak of the PA_1 band shows a pronounced blue shift with time over the timescale of several tens of picoseconds (see Fig. 6a). All of these observations are consistent with the fact that the higher frequency pump predominantly excites the shorter chain polyenes. In fact, it is well-known that in polyenes, for decreasing conjugation length, the PA_1 band shifts to the blue and the S_1 lifetime becomes progressively longer \cite{3,13}. The pronounced blue shift of the PA_1 band with time cannot be explained by vibrational relaxation of the hot S_1, because the observed timescale is too long. Instead we attribute it to simultaneous excitation of a mixture of polyenes with different chain length. For increasing time delays, the fraction of photoexcited long chains becomes progressively lower and the resulting PA band, being predominantly due to the short chains, shifts to the blue.

Interestingly, we also observe in Fig. 6 an absorption peak at 1.85 eV (PA_3 band) that does not shift with time, but remains at a fixed position over the considered timescale. The PA_3 band seems to be present immediately after photoexcitation (red line in Fig. 6a) but it can be observed more clearly only at longer delays, after the PA_1 band has shifted to the blue. The PA_3 band cannot be assigned
to a singlet state, since the $S_1 \rightarrow S_n$ transition at 1.85 eV corresponds to the longer chain polyenes, which have lifetime of the order of 1 ps. Charged states are also unlikely, since their photogeneration efficiency in solution is expected to be low and their PA bands fall in the near-IR spectral range [7]. For these reasons, we tentatively assign the PA$_3$ band to a triplet state, more specifically to the $T_1 \rightarrow T_n$ transition. In short polyenes, it has been found that the $T_1 \rightarrow T_n$ transition is red-shifted by about 0.09 eV against the ground state absorption [19]. Since the longest chains in our sample absorb at about 1.95 eV, it is reasonable to attribute this band to triplet–triplet absorption.

To corroborate our assignment, the presence of a long-lived triplet state in this spectral region has been verified by measuring CW-PA spectra in the ms time domain. In these measurements, the sample is in the solid state, at liquid nitrogen temperature and in vacuum. The obtained spectrum is shown in Fig. 6a as a dashed line. We find a long-lived PA band, peaking at ≈ 1.87 eV, in the same energy region as the PA$_3$ band. While the experimental conditions of the CW-PA measurement are quite different from those of the pump–probe experiments, this result is helpful in confirming our assignment.

To investigate the triplet formation dynamics, we fitted the experimental data. We did not adopt the previously described global fitting procedure due to the distribution of lifetimes of the S_1 state in the different chain lengths and the ensuing spectral evolution of the PA$_1$ band. We rather used a simplified model in which the transient spectra are reproduced by the superposition of two Voight profiles, corresponding to the singlet (PA$_1$) and triplet (PA$_3$) bands, respectively. The widths of both bands and the central position of PA$_3$ (1.87 eV) were kept constant, while the central position of PA$_1$ was allowed to shift in time. The results of the fit are reported in Fig. 6b and are in good agreement with the experiments. The PA$_3$ profile is reported as a shaded line in Fig. 6b.

Table 1
Transition rates values, as obtained from the global fitting procedure.

<table>
<thead>
<tr>
<th>Rate constant (fs)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_1 ($S_2 \rightarrow S_1$)</td>
<td>17</td>
</tr>
<tr>
<td>k_2 ($S_0 \rightarrow S_{1\text{hot}}$)</td>
<td>51</td>
</tr>
<tr>
<td>k_3 ($S_{1\text{hot}} \rightarrow S_{10}$)</td>
<td>175</td>
</tr>
<tr>
<td>k_4 ($S_{10} \rightarrow S_0$)</td>
<td>1200</td>
</tr>
</tbody>
</table>

Fig. 3. (a) Pump–probe dynamics at selected probe energies and (b) calculated dynamics according to the model described in the text.

Fig. 4. Species associated difference spectra obtained from the global fitting procedure.
likely mechanism thus appears to be singlet fission, starting from
the covalent S_1 state, according to the description of 2^1A_g as a
doubly excited, spin-correlated triplet state $1^3B_u\parallel 1^3B_u$ [1].

4. Conclusions

In this paper, we have presented a comprehensive study, by
femtosecond pump–probe spectroscopy, of excited state dynamics
of a polyene that approaches the infinite chain limit. By excitation
with sub-10-fs pulses resonant with the 0–0 $S_0 \rightarrow S_2$ transition, we
observed rapid loss of stimulated emission from the S_2 state, fol-
lowed by delayed formation of the hot S_1 state within 150 fs. Vibra-
tional cooling of S_1 takes place within 500 fs and is followed by
decay back to S_0 with 1 ps time constant. We find that the ultrafast
dynamics (timescale < 50 fs) of the optical states in long (infinite)
chain polyenes presents the same anomaly found in shorter chain
carotenoids [28]: SE from S_2 displays a much faster decay than the
build-up of the PA from S_1. At this stage we cannot further specu-
late on the interpretation and the consequences of this phenome-
non, yet its presence suggests it is a rather general behaviour for
small gap polyenes and carotenoids.

Upon photoexcitation with excess vibrational energy, in the
blue wing of the broad inhomogeneous absorption band, we show
that a long-lived PA appears in the transient spectra, which we as-
sign to triplet–triplet absorption. The photogeneration of triplets in
polyenes remains an elusive and rather inefficient process (quan-
tum yield lower than 10^{-2}). Here we point out the role of the chain
length and suggest, because of the ultrafast formation, that ISC is
due to singlet fission. This supports theoretical models on infinite
chains for non-degenerate ground state systems, predicting the fis-
sioning of covalent states into triplet states. We speculate that long
conjugation segments are required in order to support the separa-
tion of the nascent triple pair, i.e. the limiting size is the volume (in
1D a length) occupied by two separated triplet wavefunctions.
Assuming that a typical triplet state fills about 10 double bonds,
a length of about 20 double bonds would be the minimum require-
ment. Once separated, triplets pairs will recombine back, or possi-
bly get trapped at chain segments to become long-lived. The latter
process would explain detection of long-lived triplets that we
demonstrate by using steady state techniques. This work confirms
that linear conjugated chains are valuable test banks for molecular
dynamics, with many open issues still to be addressed.

Acknowledgements

This study was partially supported by the Human Frontiers Sci-
ence Program project N. RGP0005 "Understanding supramolecular
architectures in photosynthesis by space and time-resolved
spectroscopy".

References

Weinheim, Germany, 2000.