Michael King

Lecturer in Mathematics

Contact Information

mking@bowdoin.edu
207-725-3563
Mathematics

Searles Science Building - 124


Teaching this semester

MATH 1800. Multivariate Calculus, B

Multivariate calculus in two and three dimensions. Vectors and curves in two and three dimensions; partial and directional derivatives; the gradient; the chain rule in higher dimensions; double and triple integration; polar, cylindrical, and spherical coordinates; line integration; conservative vector fields; and Green’s theorem. An average of four to five hours of class meetings and computer laboratory sessions per week.

MATH 2000. Linear Algebra, A

A study of linear algebra in the context of Euclidean spaces and their subspaces, with selected examples drawn from more general vector spaces. Topics will include: vectors, linear independence and span, linear transformations, matrices and their inverses, bases, dimension and rank, determinants, eigenvalues and eigenvectors, diagonalization and change of basis, and orthogonality. Applications drawn from linear systems of equations, discrete dynamical systems, Markov chains, computer graphics, and least-squares approximation.

Teaching next semester

MATH 1800. Multivariate Calculus, B

Multivariate calculus in two and three dimensions. Vectors and curves in two and three dimensions; partial and directional derivatives; the gradient; the chain rule in higher dimensions; double and triple integration; polar, cylindrical, and spherical coordinates; line integration; conservative vector fields; and Green’s theorem. An average of four to five hours of class meetings and computer laboratory sessions per week.

MATH 2602. Group Theory

An introduction to the theory of finite and infinite groups, with examples ranging from symmetry groups to groups of polynomials and matrices. Properties of mappings that preserve algebraic structures are studied. Topics include cyclic groups, homomorphisms and isomorphisms, normal subgroups, factor groups, the structure of finite abelian groups, and Sylow theorems.