Associate Professor of Biology and Neuroscience
| Phone | 2077984128 |
| Title | Associate Professor |
| Department | Biology |
| 2nd Title | Associate Professor |
| 2nd Department | NEUROSCIENCE |
| Work Location | 130B Druckenmiller Hall |
| hhorch@bowdoin.edu |

B.A., Biology Swarthmore College, 1993
PhD, Neurobiology, Duke University, 2001
Post-doctoral education, Department of Neurobiology and Behavior, Cornell University, 2001-2002
Molecular Neuroscience
The Horch lab uses the cricket model system to examine the molecular neurobiological basis of a number of areas including regeneration, behavior, and development. Mainly, the lab will focus on the regeneration of interneurons in the auditory system of the cricket. Removing one ear induces auditory interneurons to sprout new dendrites, grow abnormally across the mid-line, and form synapses with intact auditory neurons from the opposite ear, both in developing as well as adult crickets. This is one of the most elegant and complex examples of neuronal regeneration known. Techniques such as dextran backfills, immunohistochemistry, and confocal microscopy will be used to understand the molecular cues involved in this phenomenon. Other projects include examining the role of octopamine on male cricket aggression and attempting to create transgenic crickets in order to examine the development of individual neurons.
Horch, H.W., Sheldon, E., Cutting, C.C., Williams, C.R., Riker, D.M., Peckler, H.R., and Sangal, R.B. 2011. Bilateral consequences of chronic unilateral denervation in the auditory system of the cricket Gryllus bimaculatus. Developmental Neuroscience, 33: 21-37.
Horch, H.W., McCarthy, S.S., Johansen, S.L., and Harris, J.M. 2009. Differential gene expression during compensatory sprouting of dendrites in the auditory system of the cricket Gryllus bimaculatus. Insect Molecular Biology, 18: 483-496.
Maynard, K.M., McCarthy, S.S., Sheldon, E., Horch, H.W. 2007. Developmental and adult expression of sempahorin 2a in the cricket Gryllus bimaculatus. Journal of Comparative Neurology. 503: 169-181.
Horch, H.W. 2004. Local effects of BDNF on dendritic growth. Reviews in the Neurosciences, 15: 116-129.
Horch, H.W. and Katz, L.C. 2002. BDNF release from single cells elicits local dendritic growth in nearby neurons. Nature Neuroscience, 5: 1177-1184.
Horch, H.W., Kruttgen, A., Portbury, S.D, and Katz, L.C. 1999. Destabilization of cortical dendrites and spines by BDNF. Neuron, 23: 353-364.
Horch, H.W., and Sargent, P.B. 1996. Effects of denervation on acetylcholine receptor clusters on frog cardiac ganglion neurons as revealed by quantitative laser scanning confocal microscopy. J. Neurosci. 16(5): 1720-1729.
Horch, H.W., and Sargent, P.B. 1996. Synaptic and extrasynaptic distribution of two distinct populations of nicotinic acetylcholine receptor clusters in the frog cardiac ganglion. J. Neurocytol. 25: 67-77.
Horch, H.W., and Sargent, P.B. 1995. Perisynaptic surface distribution of multiple classes of nicotinic acetylcholine receptors on neurons in the chicken ciliary ganglion. J. Neurosci. 15(12): 7778-7795.
Hadley enjoys flying, playing soccer, and wants to learn how to sea kayak.