Reference Points, Prospect Theory and Momentum on the PGA Tour

Jeremy Arkes
Naval Postgraduate School
Daniel F. Stone
Bowdoin College

University of Virginia
August 31, 2015
Background

Background

- Pope and Schweitzer (AER, 2011):

 PGA birdie putts 3% worse than par putts, ceteris paribus

 Greater ‘effort’ and/or risk-seeking for putts for par

 Par to bogey: feels bad. Birdie to par: not so bad

 But score vs par shouldn’t matter. A stroke is a stroke (usually)

 Arbitrary reference pt (par) matters. Key part of prospect theory
 (Kahneman and Tversky, Ecta, 1979)

 Field evidence of PT w high stakes, experienced agents

 "It’s nice to make birdie putts but I think those par putts are
 probably – I feel more energetic when I make those putts than I do a
 birdie"

 - Tiger Woods, last week

 See also DellaVigna et al, 2014 (job search), Camerer et al, AEA,
 2015, (consumer behavior), Barberis, JEP, 2013 (survey)
Background

- Pope and Schweitzer (AER, 2011):
 - PGA birdie putts 3% pts worse than par putts, ceteris paribus

- Greater 'effort' and/or risk-seeking for putts for par

- Par to bogey: feels bad. Birdie to par: not so bad

- But score vs par shouldn't matter. A stroke is a stroke (usually)

- Arbitrary reference pt (par) matters. Key part of prospect theory (Kahneman and Tversky, Ecta, 1979)

- Field evidence of PT w high stakes, experienced agents

- "It's nice to make birdie putts but I think those par putts are probably – I feel more energetic when I make those putts than I do a birdie"

- Tiger Woods, last week

- See also DellaVigna et al, 2014 (job search), Camerer et al, AEA, 2015, (consumer behavior), Barberis, JEP, 2013 (survey)
Background

- Pope and Schweitzer (AER, 2011):
 - PGA birdie putts 3% pts worse than par putts, ceteris paribus
 - Greater ‘effort’ and/or risk-seeking for putts for par
Background

- Pope and Schweitzer (AER, 2011):
- PGA birdie putts 3% pts worse than par putts, ceteris paribus
- Greater ‘effort’ and/or risk-seeking for putts for par
- Par to bogey: feels bad. Birdie to par: not so bad

"It’s nice to make birdie putts but I think those par putts are probably – I feel more energetic when I make those putts than I do a birdie"

- Tiger Woods, last week

See also DellaVigna et al, 2014 (job search), Camerer et al, AEA, 2015, (consumer behavior), Barberis, JEP, 2013 (survey)
Background

- Pope and Schweitzer (AER, 2011):
 - PGA birdie putts 3 % pts worse than par putts, ceteris paribus
 - Greater ‘effort’ and/or risk-seeking for putts for par
 - Par to bogey: feels bad. Birdie to par: not so bad
 - But score vs par shouldn’t matter. A stroke is a stroke (usually)

Arbitrary reference pt (par) matters. Key part of prospect theory (Kahneman and Tversky, Ecta, 1979)

Field evidence of PT w high stakes, experienced agents

"It’s nice to make birdie putts but I think those par putts are probably – I feel more energetic when I make those putts than I do a birdie"

- Tiger Woods, last week

See also DellaVigna et al, 2014 (job search), Camerer et al, AEA, 2015, (consumer behavior), Barberis, JEP, 2013 (survey)
Background

- Pope and Schweitzer (AER, 2011):
 - PGA birdie putts 3% pts worse than par putts, ceteris paribus
 - Greater ‘effort’ and/or risk-seeking for putts for par
 - Par to bogey: feels bad. Birdie to par: not so bad
 - But score vs par shouldn’t matter. A stroke is a stroke (usually)
 - Arbitrary reference pt (par) matters. Key part of prospect theory (Kahneman and Tversky, Ecta, 1979)
Background

- Pope and Schweitzer (AER, 2011):
 - PGA birdie putts 3% pts worse than par putts, ceteris paribus
 - Greater ‘effort’ and/or risk-seeking for putts for par
 - Par to bogey: feels bad. Birdie to par: not so bad
 - But score vs par shouldn’t matter. A stroke is a stroke (usually)
 - Arbitrary reference pt (par) matters. Key part of prospect theory (Kahneman and Tversky, Ecta, 1979)
 - Field evidence of PT w high stakes, experienced agents

- "It's nice to make birdie putts but I think those par putts are probably – I feel more energetic when I make those putts than I do a birdie"
- Tiger Woods, last week

- See also DellaVigna et al, 2014 (job search), Camerer et al, AEA, 2015, (consumer behavior), Barberis, JEP, 2013 (survey)
Background

- Pope and Schweitzer (AER, 2011):
 - PGA birdie putts 3 % pts worse than par putts, ceteris paribus
 - Greater ‘effort’ and/or risk-seeking for putts for par
 - Par to bogey: feels bad. Birdie to par: not so bad
 - But score vs par shouldn’t matter. A stroke is a stroke (usually)
 - Arbitrary reference pt (par) matters. Key part of prospect theory (Kahneman and Tversky, Ecta, 1979)
- Field evidence of PT w high stakes, experienced agents

- “It’s nice to make birdie putts but I think those par putts are probably – I feel more energetic when I make those putts than I do a birdie”
- See also DellaVigna et al, 2014 (job search), Camerer et al, AEA, 2015, (consumer behavior), Barberis, JEP, 2013 (survey)
Background

- Pope and Schweitzer (AER, 2011):
 - PGA birdie putts 3 % pts worse than par putts, ceteris paribus
 - Greater ‘effort’ and/or risk-seeking for putts for par
 - Par to bogey: feels bad. Birdie to par: not so bad
 - But score vs par shouldn’t matter. A stroke is a stroke (usually)
 - Arbitrary reference pt (par) matters. Key part of prospect theory (Kahneman and Tversky, Ecta, 1979)
 - Field evidence of PT w high stakes, experienced agents

- “It’s nice to make birdie putts but I think those par putts are probably – I feel more energetic when I make those putts than I do a birdie”
- - Tiger Woods, last week

See also DellaVigna et al, 2014 (job search), Camerer et al, AEA, 2015, (consumer behavior), Barberis, JEP, 2013 (survey)
Background

- Pope and Schweitzer (AER, 2011):
 - PGA birdie putts 3% pts worse than par putts, ceteris paribus
 - Greater ‘effort’ and/or risk-seeking for putts for par
 - Par to bogey: feels bad. Birdie to par: not so bad
 - But score vs par shouldn’t matter. A stroke is a stroke (usually)
 - Arbitrary reference pt (par) matters. Key part of prospect theory (Kahneman and Tversky, Ecta, 1979)
 - Field evidence of PT w high stakes, experienced agents

- “It’s nice to make birdie putts but I think those par putts are probably – I feel more energetic when I make those putts than I do a birdie”
 - Tiger Woods, last week

- See also DellaVigna et al, 2014 (job search), Camerer et al, AEA, 2015, (consumer behavior), Barberis, JEP, 2013 (survey)
Going further back...

Tversky et al (1985): no evidence of hot hand in basketball

Several follow up studies... Kahneman (2011): "hot hand is massive and widespread cognitive illusion"

So what? (who cares?)

2 significant issues

1) Just how biased can people really be?

2) Momentum matters (does confidence enhance performance? how much? when? implications for education, etc)
Going further back..

Tversky et al (1985): no evidence of hot hand in basketball

Several follow up studies... Kahneman (2011): “hot hand is massive and widespread cognitive illusion”

So what? (who cares?)

2 significant issues

1) Just how biased can people really be?

2) Momentum matters (does confidence enhance performance? how much? when? implications for education, etc)
Going further back...
Tversky et al (1985): no evidence of hot hand in basketball
Background ctd

- Going further back..
- Several follow up studies... Kahneman (2011): “hot hand is massive and widespread cognitive illusion”
Background ctd

- Going further back..
- Several follow up studies... Kahneman (2011): “hot hand is massive and widespread cognitive illusion”

- So what? (who cares?)
Going further back...

Tversky et al (1985): no evidence of hot hand in basketball

Several follow up studies... Kahneman (2011): “hot hand is massive and widespread cognitive illusion”

So what? (who cares?)

2 significant issues
Going further back...

Tversky et al (1985): no evidence of hot hand in basketball

Several follow up studies... Kahneman (2011): “hot hand is massive and widespread cognitive illusion”

So what? (who cares?)

2 significant issues

1) Just how biased can people really be?
Going further back...

Tversky et al (1985): no evidence of hot hand in basketball

Several follow up studies... Kahneman (2011): “hot hand is massive and widespread cognitive illusion”

So what? (who cares?)

2 significant issues

1) Just how biased can people really be?

2) Momentum matters (does confidence enhance performance? how much? when? implications for education, etc)
Story ctd

Recent wave of new hot hand lit (mostly bball)

Arkes, 2010; Miller and Sanjurjo, 2014, 2015

(New consensus: hot hand is real. But "hot hand bias" is real too)

Arkes ∼ 2014: Looked for hot hand in golf. Found *decline* in birdie probability after birdie on last hole

Opposite of hot hand

But consistent with prospect theory, reference point of par on 'recent holes' (current hole and last hole)
Recent wave of new hot hand lit (mostly bball)
Recent wave of new hot hand lit (mostly bball)
Arkes, 2010; Miller and Sanjurjo, 2014, 2015
Recent wave of new hot hand lit (mostly bball)
Arkes, 2010; Miller and Sanjurjo, 2014, 2015
(New consensus: hot hand is real. But “hot hand bias” is real too)
Recent wave of new hot hand lit (mostly bball)

Arkes, 2010; Miller and Sanjurjo, 2014, 2015

(New consensus: hot hand is real. But “hot hand bias” is real too)

Arkes ~ 2014: Looked for hot hand in golf. Found *decline* in birdie probability after birdie on last hole
Recent wave of new hot hand lit (mostly bball)
Arkes, 2010; Miller and Sanjurjo, 2014, 2015
(New consensus: hot hand is real. But “hot hand bias” is real too)
Arkes ~ 2014: Looked for hot hand in golf. Found *decline* in birdie probability after birdie on last hole
Opposite of hot hand
Recent wave of new hot hand lit (mostly bball)
Arkes, 2010; Miller and Sanjurjo, 2014, 2015
(New consensus: hot hand is real. But “hot hand bias” is real too)

Arkes ~ 2014: Looked for hot hand in golf. Found *decline* in birdie probability after birdie on last hole
Opposite of hot hand
But consistent with prospect theory, reference point of par on ‘recent holes’ (current hole and last hole)
Story ctd

Arkes result suggests reference pt of par for 'recent holes'

 Seems plausible, worth looking into

But what about score vs par for the day (round)?

"You get to like the 12th hole and I'm three under par and I don't want to have one hole hurt a round so I end up laying up" - Phil Mickelson, earlier this summer

And even across rounds, for tournament?
Story ctd

- Arkes result suggests reference pt of par for ‘recent holes’
Arkes result suggests reference pt of par for ‘recent holes’
Seems plausible, worth looking into
Story ctd

- Arkes result suggests reference pt of par for ‘recent holes’
- Seems plausible, worth looking into

- But what about score vs par for the day (round)?

"You get to like the 12th hole and I’m three under par and I don’t want to have one hole hurt a round so I end up laying up."

- Phil Mickelson, earlier this summer

- And even across rounds, for tournament?
Arkes result suggests reference pt of par for ‘recent holes’
> Seems plausible, worth looking into

But what about score vs par for the day (round)?
> “You get to like the 12th hole and I’m three under par and I don’t want to have one hole hurt a round so I end up laying up”
Arkes result suggests reference pt of par for ‘recent holes’
Seems plausible, worth looking into

But what about score vs par for the day (round)?
“You get to like the 12th hole and I’m three under par and I don’t want to have one hole hurt a round so I end up laying up”
- Phil Mickelson, earlier this summer
Story ctd

- Arkes result suggests reference pt of par for ‘recent holes’
- Seems plausible, worth looking into

- But what about score vs par for the day (round)?
- “You get to like the 12th hole and I’m three under par and I don’t want to have one hole hurt a round so I end up laying up”
- - Phil Mickelson, earlier this summer

- And even across rounds, for tournament?
This paper: analysis of 3 new reference pts in golf

Extension of PS with much broader scope

And with hot/cold hand as competing force

Most of paper: tests of which factor dominates

Some auxiliary analysis where we more cleanly separate forces

Hope to better understand mechanisms, magnitudes of PT and momentum effects

Turns out PT and momentum may complement one another (not just compete.. yin and yang-ish)

Our results may even help explain those of PS
This paper: analysis of 3 new reference pts in golf

- Extension of PS with much broader scope
This paper: analysis of 3 new reference pts in golf

- Extension of PS with much broader scope
- And with hot/cold hand as competing force

Our results may even help explain those of PS
This paper: analysis of 3 new reference pts in golf

- Extension of PS with much broader scope
- And with hot/cold hand as competing force
- Most of paper: tests of which factor dominates

- Some auxiliary analysis where we more cleanly separate forces
- Hope to better understand mechanisms, magnitudes of PT and momentum effects
- Turns out PT and momentum may complement one another (not just compete... yin and yang-ish)
- Our results may even help explain those of PS
This paper: analysis of 3 new reference pts in golf

- Extension of PS with much broader scope
- And with hot/cold hand as competing force
- Most of paper: tests of which factor dominates
- Some auxiliary analysis where we more cleanly separate forces

Hope to better understand mechanisms, magnitudes of PT and momentum effects

It turns out PT and momentum may complement one another (not just compete... yin and yang-ish)

Our results may even help explain those of PS
This paper: analysis of 3 new reference pts in golf

- Extension of PS with much broader scope
- And with hot/cold hand as competing force
- Most of paper: tests of which factor dominates
- Some auxiliary analysis where we more cleanly separate separate forces

- Hope to better understand mechanisms, magnitudes of PT and momentum effects
This paper: analysis of 3 new reference pts in golf

- Extension of PS with much broader scope
- And with hot/cold hand as competing force
- Most of paper: tests of which factor dominates
- Some auxiliary analysis where we more cleanly separate forces

- Hope to better understand mechanisms, magnitudes of PT and momentum effects
- Turns out PT and momentum may complement one another (not just compete.. yin and yang-ish)
This paper: analysis of 3 new reference pts in golf

- Extension of PS with much broader scope
- And with hot/cold hand as competing force
- Most of paper: tests of which factor dominates
- Some auxiliary analysis where we more cleanly separate forces

- Hope to better understand mechanisms, magnitudes of PT and momentum effects
- Turns out PT and momentum may complement one another (not just compete.. yin and yang-ish)
- Our results may even help explain those of PS
Context: PGA (golf) tournaments

- 40 per year
- 100-150 players at start
- 18 holes per round
- Each hole has par value 3, 4 (60-65%), or 5
- By coincidence, pr(score = par) = 60-65%
- 4 rounds, 1 per day
- Top half 'make the cut' after round 2

(We *just* analyze rounds 1, 3. Still end up with 1.5 million hole-level obs (non-major events, 2003-14).

Balsdon, 2013 and Ozbeklik and Smith, 2014 analyze late holes in rounds 2, 4 to focus on rational adjustment to risk strategies)
Context: PGA (golf) tournaments

- > 40 per year

- 100-150 players at start
- 18 holes per round
- Each hole has par value 3, 4 (60-65%), or 5
- By coincidence, pr(score = par) = 60-65%
- 4 rounds, 1 per day
- Top half 'make the cut' after round 2
- (We *just* analyze rounds 1, 3. Still end up with 1.5 million hole-level obs (non-major events, 2003-14).)

Balsdon, 2013 and Ozbeklik and Smith, 2014 analyze late holes in rounds 2, 4 to focus on rational adjustment to risk strategies)
Context: PGA (golf) tournaments

- > 40 per year
- 100-150 players at start
Context: PGA (golf) tournaments

- > 40 per year
- 100-150 players at start
- 18 holes per round
Context: PGA (golf) tournaments

- > 40 per year
- 100-150 players at start
- 18 holes per round
- Each hole has par value 3, 4 (60-65%), or 5
Context: PGA (golf) tournaments

- > 40 per year
- 100-150 players at start
- 18 holes per round
- Each hole has par value 3, 4 (60-65%), or 5
- By coincidence, pr(score = par) = 60-65%
Context: PGA (golf) tournaments

- > 40 per year
- 100-150 players at start
- 18 holes per round
- Each hole has par value 3, 4 (60-65%), or 5
- By coincidence, \(\text{pr}(\text{score} = \text{par}) = 60-65\% \)
- 4 rounds, 1 per day

Balsdon, 2013 and Ozbeklik and Smith, 2014 analyze late holes in rounds 2, 4 to focus on rational adjustment to risk strategies
Context: PGA (golf) tournaments

- > 40 per year
- 100-150 players at start
- 18 holes per round
- Each hole has par value 3, 4 (60-65%), or 5
- By coincidence, \(\Pr(\text{score} = \text{par}) = 60-65\% \)
- 4 rounds, 1 per day
- Top half ‘make the cut’ after round 2

(We *just* analyze rounds 1, 3. Still end up with 1.5 million hole-level obs (non-major events, 2003-14).
Balsdon, 2013 and Ozbeklik and Smith, 2014 analyze late holes in rounds 2, 4 to focus on rational adjustment to risk strategies)
Context: PGA (golf) tournaments

- > 40 per year
- 100-150 players at start
- 18 holes per round
- Each hole has par value 3, 4 (60-65%), or 5
- By coincidence, $\text{pr}(\text{score} = \text{par}) = 60-65\%$
- 4 rounds, 1 per day
- Top half ‘make the cut’ after round 2
- (We *just* analyze rounds 1, 3. Still end up with 1.5million hole-level obs (non-major events, 2003-14).
Context: PGA (golf) tournaments

- > 40 per year
- 100-150 players at start
- 18 holes per round
- Each hole has par value 3, 4 (60-65%), or 5
- By coincidence, \(\Pr(\text{score} = \text{par}) = 60-65\% \)
- 4 rounds, 1 per day
- Top half ‘make the cut’ after round 2
- (We *just* analyze rounds 1, 3. Still end up with 1.5million hole-level obs (non-major events, 2003-14).
- Balsdon, 2013 and Ozbeklik and Smith, 2014 analyze late holes in rounds 2, 4 to focus on rational adjustment to risk strategies)
Prospect theory (see Barberis, JEP, 2013)

1. People evaluate differences or changes (versus reference point), not levels

2. Loss aversion: losses hurt 2-3x as much as gains help

3. Diminishing marginal sensitivity to gains and losses

4. Probability weighting
Prospect theory (see Barberis, JEP, 2013)

1. People evaluate differences or changes (versus reference point), not levels
Prospect theory (see Barberis, JEP, 2013)

1. People evaluate differences or changes (versus reference point), not levels
2. Loss aversion: losses hurt 2-3x as much as gains help
Prospect theory (see Barberis, JEP, 2013)

- 1. People evaluate differences or changes (versus reference point), not levels
- 2. Loss aversion: losses hurt 2-3x as much as gains help
- 3. Diminishing marginal sensitivity to gains and losses
Prospect theory (see Barberis, JEP, 2013)

- 1. People evaluate differences or changes (versus reference point), not levels
- 2. Loss aversion: losses hurt 2-3x as much as gains help
- 3. Diminishing marginal sensitivity to gains and losses
- 4. Probability weighting
Prospect theory (see Barberis, JEP, 2013)

$x = \text{score relative to reference point (score on current hole + score on relevant previous holes)}$

- Start hole in domain of losses:
 - Convex value function.
 - Highest returns to effort.

- Start hole in domain of gains:
 - Concave value function.
 - Lowest returns to effort.

- Start hole at reference pt:
 - Concave value function.
 - Moderate returns to effort.
Prospect theory (see Barberis, JEP, 2013)

\[x = \text{score relative to reference point (score on current hole + score on relevant previous holes)} \]

- **Start hole in domain of losses:**
 - Convex value function.
 - Highest returns to effort.

- **Start hole at reference pt:**
 - Concave value function.
 - Moderate returns to effort.

- **Start hole in domain of gains:**
 - Concave value function.
 - Lowest returns to effort.

\[v(x) \]
Crude summary of (best guess at) implications

- Concave in "domain of gains": more risk averse.
- 'Extreme' outcomes (birdie/bogey) less likely.
- Flatter: less effort.
- Worse overall performance (higher mean score).
- Convex and steeper in domain of losses: more risk seeking, effort.

(Just a sketch; all ambiguous really. Point is distribution, not just mean, of outcome important. Keep empirics flexible.)
Crude summary of (best guess at) implications

- Concave in “domain of gains”: more risk averse..
Concave in “domain of gains”: more risk averse.

‘extreme’ outcomes (birdie/bogey) less likely
Crude summary of (best guess at) implications

- Concave in “domain of gains”: more risk averse..
- ‘extreme’ outcomes (birdie/bogey) less likely
- And flatter: less effort..
Crude summary of (best guess at) implications

- Concave in “domain of gains”: more risk averse..
- ‘extreme’ outcomes (birdie/bogey) less likely
- And flatter: less effort..
- worse overall performance (higher mean score)
Crude summary of (best guess at) implications

- Concave in “domain of gains”: more risk averse..
- ‘extreme’ outcomes (birdie/bogey) less likely
- And flatter: less effort..
- Worse overall performance (higher mean score)
- Convex and steeper in domain of losses: more risk seeking, effort
Crude summary of (best guess at) implications

- Concave in "domain of gains": more risk averse..
- ‘extreme’ outcomes (birdie/bogey) less likely
- And flatter: less effort..
- worse overall performance (higher mean score)
- Convex and steeper in domain of losses: more risk seeking, effort

(Just a sketch; all ambiguous really. Point is distribution, not just mean, of outcome important. Keep empirics flexible)
Predictions when starting hole in domain of gains

Pr(below par) + Pr(above par) - E(score) - Outcome for current hole

PT: effort
Pr(below par) - Pr(above par) + E(score) + Outcome for current hole

PT: risk
Pr(below par) - Pr(above par) - E(score)

0 or +

Predictions for domain of losses analogous
Predictions when starting hole in domain of gains

<table>
<thead>
<tr>
<th>Outcome for current hole</th>
<th>Hot hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr(below par)</td>
<td>+</td>
</tr>
<tr>
<td>Pr(above par)</td>
<td>-</td>
</tr>
<tr>
<td>E(score)</td>
<td>-</td>
</tr>
</tbody>
</table>

Predictions for domain of losses analogous
Predictions when starting hole in domain of gains

<table>
<thead>
<tr>
<th>Outcome for current hole</th>
<th>Hot hand</th>
<th>PT: effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr(below par)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pr(above par)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E(score)</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Predictions for domain of losses analogous
Predictions when starting hole in domain of gains

<table>
<thead>
<tr>
<th>Outcome for current hole</th>
<th>Hot hand</th>
<th>PT: effort</th>
<th>PT: risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr(below par)</td>
<td>+</td>
<td>-</td>
<td>0 or +</td>
</tr>
<tr>
<td>Pr(above par)</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>E(score)</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Predictions for domain of losses analogous
Predictions when starting hole in domain of gains

<table>
<thead>
<tr>
<th>Outcome for current hole</th>
<th>Hot hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr(below par)</td>
<td>+</td>
</tr>
<tr>
<td>Pr(above par)</td>
<td>-</td>
</tr>
<tr>
<td>E(score)</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcome for current hole</th>
<th>PT: effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr(below par)</td>
<td>-</td>
</tr>
<tr>
<td>Pr(above par)</td>
<td>+</td>
</tr>
<tr>
<td>E(score)</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcome for current hole</th>
<th>PT: risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr(below par)</td>
<td>-</td>
</tr>
<tr>
<td>Pr(above par)</td>
<td>-</td>
</tr>
<tr>
<td>E(score)</td>
<td>0 or +</td>
</tr>
</tbody>
</table>

▶ Predictions for domain of losses analogous
Empirics

- Probably ideal to jointly estimate distribution of outcomes
 - (maybe MNL)
 - But computationally infeasible - large sample, lots of FEs
- Use linear models for 3 LHS vars:
 - below par (bp = 0/1), above par (ap = 0/1), score (s = 1, 2, ...)
- RHS vars?
 - Theory says effects depend on position vs ref point
 - And depend on domain of gains/losses
 - tournament = strokes below par for tournament;
 - round = strokes above for rd

Empirics

- Probably ideal to jointly estimate distribution of outcomes
Empirics

- Probably ideal to jointly estimate distribution of outcomes
- (maybe MNL)
Empirics

- Probably ideal to jointly estimate distribution of outcomes
- (maybe MNL)
- But computationally infeasible - large sample, lots of FEs
Empirics

- Probably ideal to jointly estimate distribution of outcomes
- (maybe MNL)
- But computationally infeasible - large sample, lots of FEs
- Use linear models for 3 LHS vars:
Empirics

- Probably ideal to jointly estimate distribution of outcomes
- (maybe MNL)
- But computationally infeasible - large sample, lots of FEs
- Use linear models for 3 LHS vars:
 - below par \((bp_h = 0/1)\), above par \((ap_h = 0/1)\), score \((s_h = 1, 2, ...)\)

\[\text{RHS vars?} \]

- Theory says effects depend on position vs ref point
- And depend on domain of gains/losses
 - \(tournb\) = strokes below par for tournament;
 - \(tourna\) = strokes above for tourney
 - \(roundb\) = strokes below par for round;
 - \(rounda\) = strokes above for rd
Empirics

- Probably ideal to jointly estimate distribution of outcomes
- (maybe MNL)
- But computationally infeasible - large sample, lots of FEs
- Use linear models for 3 LHS vars:
 - below par \((bp_h = 0/1)\), above par \((ap_h = 0/1)\), score \((s_h = 1, 2, \ldots)\)
- RHS vars?
Empirics

- Probably ideal to jointly estimate distribution of outcomes
- (maybe MNL)
- But computationally infeasible - large sample, lots of FEs
- Use linear models for 3 LHS vars:
 - below par \((bp_h = 0/1)\), above par \((ap_h = 0/1)\), score \((s_h = 1, 2, ...\))
- RHS vars?
- Theory says effects depend on position vs ref point
Empirics

- Probably ideal to jointly estimate distribution of outcomes
- (maybe MNL)
- But computationally infeasible - large sample, lots of FEs
- Use linear models for 3 LHS vars:
 - below par \((bp_h = 0/1)\), above par \((ap_h = 0/1)\), score \((s_h = 1, 2, \ldots)\)

- RHS vars?
- Theory says effects depend on position vs ref point
- And depend on domain of gains/losses
Empirics

- Probably ideal to jointly estimate distribution of outcomes
- (maybe MNL)
- But computationally infeasible - large sample, lots of FEs
- Use linear models for 3 LHS vars:
 - below par \((bp_h = 0/1)\), above par \((ap_h = 0/1)\), score \((s_h = 1, 2, ...)\)

- RHS vars?
- Theory says effects depend on position vs ref point
- And depend on domain of gains/losses
- \(tournb = \) strokes below par for tournament;
Empirics

- Probably ideal to jointly estimate distribution of outcomes
 - (maybe MNL)
 - But computationally infeasible - large sample, lots of FEs
- Use linear models for 3 LHS vars:
 - below par \((bp_h = 0/1)\), above par \((ap_h = 0/1)\), score \((s_h = 1, 2, ...)\)
- RHS vars?
- Theory says effects depend on position vs ref point
- And depend on domain of gains/losses
 - \(tournb\) = strokes below par for tournament;
 - \(tourna\) = strokes above for tourney
Empirics

- Probably ideal to jointly estimate distribution of outcomes
- (maybe MNL)
- But computationally infeasible - large sample, lots of FEs
- Use linear models for 3 LHS vars:
 - below par \((bp_h = 0/1)\), above par \((ap_h = 0/1)\), score \((s_h = 1, 2, \ldots)\)

- RHS vars?
- Theory says effects depend on position vs ref point
- And depend on domain of gains/losses
- \(tournb\) = strokes below par for tournament;
- \(tourney\) = strokes above for tourney
- \(roundb\) = strokes below par for round; \(rounda\) = strokes above for rd
RHS vars ctd

lastb = strokes below last hole;
lasta = strokes above

Checked out further lags and last2/last3 specifications; just makes things messier

Include last/round/tourn vars in all models as controls for each other

Note all have support: 0, 1, 2, ...

Yes, highly correlated, hard to see marginal effects, magnitudes. Address this later

Also look at simple non-linear variants

And consider heterogeneity (in ref pts used and effects)
RHS vars ctd

- $lastb =$ strokes below last hole; $lasta =$ strokes above

Also look at simple non-linear variants

And consider heterogeneity (in ref pts used and effects)
RHS vars ctd

- $lastb =$ strokes below last hole; $lasta =$ strokes above
- Checked out further lags and last2/last3 specifications; just makes things messier
RHS vars ctd

- \(\text{lastb} \) = strokes below last hole; \(\text{lasta} \) = strokes above
- Checked out further lags and last2/last3 specifications; just makes things messier
- Include \(\text{last/round/tourn} \) vars in all models as controls for each other

Note all have support: 0, 1, 2, ...

Yes, highly correlated, hard to see marginal effects, magnitudes.
Address this later
Also look at simple non-linear variants
And consider heterogeneity (in ref pts used and effects)
RHS vars ctd

- $lastb =$ strokes below last hole; $lasta =$ strokes above
- Checked out further lags and last2/last3 specifications; just makes things messier

- Include $last/round/tourn$ vars in all models as controls for each other
- Note all have support: 0, 1, 2, ...
RHS vars ctd

- \(\text{lastb} = \) strokes below last hole; \(\text{lasta} = \) strokes above
- Checked out further lags and last2/last3 specifications; just makes things messier

- Include \(\text{last/round/tourn} \) vars in all models as controls for each other
- Note all have support: 0, 1, 2, ...
- Yes, highly correlated, hard to see marginal effects, magnitudes. Address this later
RHS vars ctd

- \(\text{lastb} \) = strokes below last hole; \(\text{lasta} \) = strokes above
- Checked out further lags and last2/last3 specifications; just makes things messier

- Include \(\text{last/round/tourn} \) vars in all models as controls for each other
- Note all have support: 0, 1, 2, ...
- Yes, highly correlated, hard to see marginal effects, magnitudes. Address this later
- Also look at simple non-linear variants
RHS vars ctd

- $lastb =$ strokes below last hole; $lasta =$ strokes above
- Checked out further lags and last2/last3 specifications; just makes things messier
- Include $last/round/tourn$ vars in all models as controls for each other
- Note all have support: $0, 1, 2, ...$
- Yes, highly correlated, hard to see marginal effects, magnitudes. Address this later
- Also look at simple non-linear variants
- And consider heterogeneity (in ref pts used and effects)
Empirics ctd

Controls?

Course/weather difficulty: hole-day FEs

Tournament standing: restrict analysis to rounds 1 and 3

Player ability: definitely. But this varies..

Allow ability to vary by year? By hole type? By course?

Issue: last/rd/tourn vars correlated w/ lagged dep var. Endogenous

Intuition: suppose we used player-yr FEs and there were just 3 holes in yr, and mean score = 0

Then last_b = 2 = 1 would have 50% chance of predicting ap_h = 2 = 1

(But last_b = 2 = 1 isn't causing ap_h = 2 = 1. Just correlated)

Arellano-Bond doesn't work b/c all lags/leads possibly correlated
Empirics ctd

- Controls?

- Issue: last/rd/tourn vars correlated w/lagged dep var. Endogenous

- Intuition: suppose we used player-yr FEs and there were just 3 holes in yr, and mean score=0

- Then lastb/h=2=1 would have 50% chance of predicting ap/h=2=1

- (But lastb/h=2=1 isn't causing ap/h=2=1. Just correlated)

- Arellano-Bond doesn't work b/c all lags/leads possibly correlated
Empirics ctd

- Controls?
- Course/weather difficulty: hole-day FE

Issue: last/rd/tourn vars correlated w/lagged dep var. Endogenous

Intuition: suppose we used player-yr FE and there were just 3 holes in yr, and mean score=0

Then lastb h = 2 would have 50% chance of predicting ap h = 2 (but lastb h = 2 isn’t causing ap h = 2. Just correlated)

Arellano-Bond doesn’t work b/c all lags/leads possibly correlated
Empirics ctd

- Controls?
- Course/weather difficulty: hole-day FE
- Tournament standing: restrict analysis to rounds 1 and 3
Empirics ctd

- Controls?
- Course/weather difficulty: hole-day FE
- Tournament standing: restrict analysis to rounds 1 and 3
- Player ability: definitely. But this varies..

- Issue: last/rd/ton sur vars correlated w/lagged dep var. Endogenous
- Intuition: suppose we used player-yr FE and there were just 3 holes in yr, and mean score=0
- Then lastb = 2 = 1 would have 50% chance of predicting ap = 2 = 1
- (But lastb = 2 = 1 isn't causing ap = 2 = 1. Just correlated)
- Arellano-Bond doesn't work b/c all lags/leads possibly correlated
Empirics ctd

- Controls?
- Course/weather difficulty: hole-day FEs
- Tournament standing: restrict analysis to rounds 1 and 3
- Player ability: definitely. But this varies..
- Allow ability to vary by year? By hole type? By course?

Issue: last/rd/tourn vars correlated w/lagged dep var. Endogenous

Intuition: suppose we used player-yr FEs and there were just 3 holes in yr, and mean score=0

Then lastb_h = 2 _1 would have 50% chance of predicting _1

(But lastb_h = 2 _1 isn't causing _1. Just correlated)

Arellano-Bond doesn't work b/c all lags/leads possibly correlated
Empirics ctd

- Controls?
- Course/weather difficulty: hole-day FEs
- Tournament standing: restrict analysis to rounds 1 and 3
- Player ability: definitely. But this varies..
- Allow ability to vary by year? By hole type? By course?
- Issue: *last/rd/tourn* vars correlated w/lagged dep var. Endogenous w player FEs (dynamic panel w FEs)
Empirics ctd

- Controls?
- Course/weather difficulty: hole-day FEs
- Tournament standing: restrict analysis to rounds 1 and 3
- Player ability: definitely. But this varies..
- Allow ability to vary by year? By hole type? By course?
- Issue: last/rd/tourn vars correlated w/lagged dep var. Endogenous w player FEs (dynamic panel w FEs)
- Intuition: suppose we used player-yr FEs and there were just 3 holes in yr, and mean score=0
Empirics ctd

- Controls?
- Course/weather difficulty: hole-day FEs
- Tournament standing: restrict analysis to rounds 1 and 3
- Player ability: definitely. But this varies..
- Allow ability to vary by year? By hole type? By course?
- Issue: last/rd/tourn vars correlated w/lagged dep var. Endogenous w player FEs (dynamic panel w FEs)
- Intuition: suppose we used player-yr FEs and there were just 3 holes in yr, and mean score=0
- Then lastb_{h=2} = 1 would have 50% chance of predicting ap_{h=2} = 1
Empirics ctd

- Controls?
- Course/weather difficulty: hole-day FEs
- Tournament standing: restrict analysis to rounds 1 and 3
- Player ability: definitely. But this varies..
- Allow ability to vary by year? By hole type? By course?
- Issue: last/rd/tourn vars correlated w/lagged dep var. Endogenous w player FEs (dynamic panel w FEs)
- Intuition: suppose we used player-yr FEs and there were just 3 holes in yr, and mean score=0
- Then $last_{h=2} = 1$ would have 50% chance of predicting $ap_{h=2} = 1$
- (But $last_{h=2} = 1$ isn't causing $ap_{h=2} = 1$. Just correlated)
Empirics ctd

- Controls?
- Course/weather difficulty: hole-day FEs
- Tournament standing: restrict analysis to rounds 1 and 3
- Player ability: definitely. But this varies..
- Allow ability to vary by year? By hole type? By course?
- Issue: last/rd/tourn vars correlated w/lagged dep var. Endogenous w player FEs (dynamic panel w FEs)
- Intuition: suppose we used player-yr FEs and there were just 3 holes in yr, and mean score=0
- Then \(lastb_{h=2} = 1 \) would have 50% chance of predicting \(ap_{h=2} = 1 \)
- (But \(lastb_{h=2} = 1 \) isn't causing \(ap_{h=2} = 1 \). Just correlated)
- Arellano-Bond doesn't work b/c all lags/leads possibly correlated
Empirics

Good news: dynamic panel problem disappears as $T \to \infty$ (T = # obs per FE group).

How high does T need to be for minimal bias? Check empirically (results for rd 3, bp).

Idea: if FE groups w/low T cause bias, dropping them should change estimates.

<table>
<thead>
<tr>
<th>Panel A: Player-course FEs</th>
<th>#Obs per FE group:</th>
<th>lastb</th>
<th>lasta</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 0</td>
<td>> 50</td>
<td>-0.0165***</td>
<td>-0.0073***</td>
<td>1072649</td>
</tr>
<tr>
<td>> 100</td>
<td></td>
<td>-0.0102***</td>
<td>-0.0026**</td>
<td>654653</td>
</tr>
<tr>
<td>> 100</td>
<td></td>
<td>-0.0083***</td>
<td>-0.0005</td>
<td>276012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Player-year-par FEs</th>
<th>#Obs per FE group:</th>
<th>lastb</th>
<th>lasta</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 0</td>
<td>> 50</td>
<td>-0.0039***</td>
<td>-0.0004</td>
<td>1072649</td>
</tr>
<tr>
<td>> 100</td>
<td></td>
<td>-0.0038***</td>
<td>0.0004</td>
<td>943575</td>
</tr>
<tr>
<td>> 100</td>
<td></td>
<td>-0.0029**</td>
<td>0.0003</td>
<td>648089</td>
</tr>
</tbody>
</table>

Use player-yr-par FEs (reghdfe!)
Cluster SEs by player-tournament-year.
Empirics

- Good news: dynamic panel problem disappears as $T \to \infty$ ($T = \#$ obs per FE group)
Empirics

- Good news: dynamic panel problem disappears as $T \rightarrow \infty$ ($T = \# \text{obs per FE group}$)
- How high does T need to be for minimal bias? Check empirically (results for rd 3, bp_h)

Panel A: Player-course FEs
#Obs per FE group: >0 >50 >100

<table>
<thead>
<tr>
<th></th>
<th>lastb</th>
<th>lasta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.0165***</td>
<td>-0.0073***</td>
</tr>
<tr>
<td></td>
<td>-0.0102***</td>
<td>-0.0026**</td>
</tr>
<tr>
<td></td>
<td>-0.0083***</td>
<td>-0.0005</td>
</tr>
</tbody>
</table>

...

N 1072649 654653 276012

Panel B: Player-year-par FEs
#Obs per FE group: >0 >50 >100

<table>
<thead>
<tr>
<th></th>
<th>lastb</th>
<th>lasta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.0039***</td>
<td>-0.0004</td>
</tr>
<tr>
<td></td>
<td>-0.0038***</td>
<td>0.0004</td>
</tr>
<tr>
<td></td>
<td>-0.0029**</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

...

N 1072649 943575 648089

- Use player-yr-par FEs (reghdfe!)
- Cluster SEs by player-tournament-year
Empirics

- Good news: dynamic panel problem disappears as $T \to \infty$ ($T = \# obs$ per FE group)

- How high does T need to be for minimal bias? Check empirically (results for rd 3, bp_h)

- Idea: if FE groups w/low T cause bias, dropping them should change estimates

<table>
<thead>
<tr>
<th>FE Groups</th>
<th>#Obs per FE group:</th>
<th>$lastb$</th>
<th>$lasta$</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>> 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel A: Player-course FEs

Panel B: Player-year-par FEs

- Use player-yr-par FEs (reghdfe!)

- Cluster SEs by player-tournament-year
Empirics

- Good news: dynamic panel problem disappears as $T \to \infty$ ($T = \# \text{obs per FE group}$)
- How high does T need to be for minimal bias? Check empirically (results for rd 3, bp_h)
- Idea: if FE groups w/low T cause bias, dropping them should change estimates

<table>
<thead>
<tr>
<th>#Obs per FE group:</th>
<th>> 0</th>
<th>> 50</th>
<th>> 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>lastb</td>
<td>-0.0165***</td>
<td>-0.0102***</td>
<td>-0.0083***</td>
</tr>
<tr>
<td>lasta</td>
<td>-0.0073***</td>
<td>-0.0026**</td>
<td>-0.0005</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1072649</td>
<td>654653</td>
<td>276012</td>
</tr>
</tbody>
</table>

Use player-yr-par FEs (reghdfe!)
Cluster SEs by player-tournament-year
Empirics

- Good news: dynamic panel problem disappears as $T \to \infty$ ($T =$ # obs per FE group)
- How high does T need to be for minimal bias? Check empirically (results for rd 3, b_{p_h})
- Idea: if FE groups w/low T cause bias, dropping them should change estimates

<table>
<thead>
<tr>
<th>Panel A: Player-course FEs</th>
<th>#Obs per FE group:</th>
<th>$>$ 0</th>
<th>$>$ 50</th>
<th>$>$ 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>$lastb$</td>
<td>-0.0165***</td>
<td>-0.0102***</td>
<td>-0.0083***</td>
<td></td>
</tr>
<tr>
<td>$lasta$</td>
<td>-0.0073***</td>
<td>-0.0026**</td>
<td>-0.0005</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1072649</td>
<td>654653</td>
<td>276012</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Player-year-par FEs</th>
<th>#Obs per FE group:</th>
<th>$>$ 0</th>
<th>$>$ 50</th>
<th>$>$ 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>$lastb$</td>
<td>-0.0039***</td>
<td>-0.0038***</td>
<td>-0.0029**</td>
<td></td>
</tr>
<tr>
<td>$lasta$</td>
<td>-0.0004</td>
<td>0.0004</td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1072649</td>
<td>943575</td>
<td>648089</td>
<td></td>
</tr>
</tbody>
</table>
Empirics

- Good news: dynamic panel problem disappears as $T \to \infty$ ($T = \# \text{obs per FE group}$)
- How high does T need to be for minimal bias? Check empirically (results for rd 3, bp_h)
- Idea: if FE groups w/low T cause bias, dropping them should change estimates

<table>
<thead>
<tr>
<th>#Obs per FE group:</th>
<th>> 0</th>
<th>> 50</th>
<th>> 100</th>
</tr>
</thead>
</table>
| Panel A: Player-course FE
| \(lastb\) | -0.0165*** | -0.0102*** | -0.0083*** |
| \(lasta\) | -0.0073*** | -0.0026** | -0.0005 |
| ... | | | |
| N | 1072649 | 654653 | 276012 |
| Panel B: Player-year-par FE
| \(lastb\) | -0.0039*** | -0.0038*** | -0.0029** |
| \(lasta\) | -0.0004 | 0.0004 | 0.0003 |
| ... | | | |
| N | 1072649 | 943575 | 648089 |

- Use player-yr-par FEs (reghdfe!)
Empirics

- Good news: dynamic panel problem disappears as $T \to \infty$ ($T =$ # obs per FE group)
- How high does T need to be for minimal bias? Check empirically (results for rd 3, bp_h)
- Idea: if FE groups w/low T cause bias, dropping them should change estimates

<table>
<thead>
<tr>
<th></th>
<th>Panel A: Player-course FEs</th>
<th></th>
<th>Panel B: Player-year-par FEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Obs per FE group:</td>
<td>> 0</td>
<td>> 50</td>
<td>> 100</td>
</tr>
<tr>
<td>lastb</td>
<td>-0.0165***</td>
<td>-0.0102***</td>
<td>-0.0083***</td>
</tr>
<tr>
<td>lasta</td>
<td>-0.0073***</td>
<td>-0.0026**</td>
<td>-0.0005</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1072649</td>
<td>654653</td>
<td>276012</td>
</tr>
</tbody>
</table>

- Use player-yr-par FEs (reghdfe!)
- Cluster SEs by player-tournament-year
(Selected) main results: domain of gains

<table>
<thead>
<tr>
<th></th>
<th>Round 1</th>
<th>Round 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>bp</td>
<td>ap</td>
</tr>
<tr>
<td>Last</td>
<td>-0.0038***</td>
<td>0.0008</td>
</tr>
<tr>
<td>Round</td>
<td>-0.0012***</td>
<td>-0.0002</td>
</tr>
<tr>
<td>Round</td>
<td>-0.0013***</td>
<td>0.0000</td>
</tr>
<tr>
<td>N</td>
<td>943575</td>
<td>943575</td>
</tr>
</tbody>
</table>

PT effort effects, some PT risk, no HH
(Selected) main results: domain of gains

<table>
<thead>
<tr>
<th></th>
<th>Round 1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bp</td>
<td>ap</td>
<td>s</td>
</tr>
<tr>
<td>lastb</td>
<td>-0.0038***</td>
<td>0.0008</td>
<td>0.0040**</td>
</tr>
<tr>
<td>roundb</td>
<td>-0.0012***</td>
<td>-0.0002</td>
<td>0.0009</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>943575</td>
<td>943575</td>
<td>943575</td>
</tr>
</tbody>
</table>
(Selected) main results: domain of gains

<table>
<thead>
<tr>
<th></th>
<th>Round 1</th>
<th>Round 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bp</td>
<td>ap</td>
</tr>
<tr>
<td>lastb</td>
<td>-0.0038***</td>
<td>0.0008</td>
</tr>
<tr>
<td>roundb</td>
<td>-0.0012***</td>
<td>-0.0002</td>
</tr>
<tr>
<td>tournb</td>
<td>-0.0013***</td>
<td>0.0000</td>
</tr>
<tr>
<td>N</td>
<td>943575</td>
<td>943575</td>
</tr>
</tbody>
</table>

PT effort effects, some PT risk, no HH
(Selected) main results: domain of gains

<table>
<thead>
<tr>
<th></th>
<th>Round 1</th>
<th>Round 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bp</td>
<td>ap</td>
</tr>
<tr>
<td>$lastb$</td>
<td>-0.0038***</td>
<td>0.0008</td>
</tr>
<tr>
<td>$roundb$</td>
<td>-0.0012***</td>
<td>-0.0002</td>
</tr>
<tr>
<td>$tournb$</td>
<td>-0.0013***</td>
<td>0.0000</td>
</tr>
<tr>
<td>N</td>
<td>943575</td>
<td>943575</td>
</tr>
</tbody>
</table>

- PT effort effects, some PT risk, no HH
Main results: domain of losses

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Risk-seeking/cold in round 1; cold in round 3
Main results: domain of losses

<table>
<thead>
<tr>
<th></th>
<th>Round 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bp</td>
</tr>
<tr>
<td>$lasta$</td>
<td>0.0004</td>
</tr>
<tr>
<td>$rounda$</td>
<td>0.0012***</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td>N</td>
<td>943575</td>
</tr>
</tbody>
</table>
Main results: domain of losses

<table>
<thead>
<tr>
<th></th>
<th>Round 1</th>
<th></th>
<th></th>
<th>Round 3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bp</td>
<td>ap</td>
<td>s</td>
<td>bp</td>
<td>ap</td>
<td>s</td>
</tr>
<tr>
<td>lasta</td>
<td>0.0004</td>
<td>0.0021**</td>
<td>0.0019</td>
<td>-0.0018</td>
<td>0.0013</td>
<td>0.0037</td>
</tr>
<tr>
<td>rounda</td>
<td>0.0012***</td>
<td>0.0013***</td>
<td>0.0014**</td>
<td>0.0008</td>
<td>0.0004</td>
<td>-0.0002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tourney</td>
<td>-0.0007</td>
<td>0.0015***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>943575</td>
<td>943575</td>
<td>943575</td>
<td>473451</td>
<td>473451</td>
<td>473451</td>
</tr>
</tbody>
</table>
Main results: domain of losses

<table>
<thead>
<tr>
<th></th>
<th>Round 1</th>
<th>Round 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bp</td>
<td>ap</td>
</tr>
<tr>
<td>lasta</td>
<td>0.0004</td>
<td>0.0021**</td>
</tr>
<tr>
<td>rounda</td>
<td>0.0012***</td>
<td>0.0013***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>943575</td>
<td>943575</td>
</tr>
</tbody>
</table>

\[\text{Risk-seeking/cold in round 1; cold in round 3}\]
Quadratics
Quadratics

<table>
<thead>
<tr>
<th></th>
<th>bp</th>
<th>ap</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>rounda</td>
<td>0.0021***</td>
<td>-0.0007</td>
<td>-0.0021*</td>
</tr>
<tr>
<td>roundasq</td>
<td>-0.0002</td>
<td>0.0004***</td>
<td>0.0007***</td>
</tr>
</tbody>
</table>

...

N | 943575 | 943575 | 943575 |

PT effort effects for low values of `rounda`; becomes risk/cold for higher values

<table>
<thead>
<tr>
<th></th>
<th>bp</th>
<th>ap</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>roundb</td>
<td>-0.0029**</td>
<td>-0.0016</td>
<td>0.0001</td>
</tr>
<tr>
<td>roundbsq</td>
<td>0.0001</td>
<td>0.0005**</td>
<td>0.0007*</td>
</tr>
</tbody>
</table>

...

N | 943575 | 943575 | 943575 |

PT risk effects for low `roundb`; effort for higher `roundb`
Quadratics

<table>
<thead>
<tr>
<th></th>
<th>Round 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bp</td>
</tr>
<tr>
<td>rounda</td>
<td>0.0021***</td>
</tr>
<tr>
<td>roundasq</td>
<td>-0.0002</td>
</tr>
</tbody>
</table>

...

| N | 943575 | 943575 | 943575 |

- PT effort effects for low values of \textit{rounda}; becomes risk/cold for higher values
Quadratics

Round 1

<table>
<thead>
<tr>
<th></th>
<th>bp</th>
<th>ap</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>rounda</td>
<td>0.0021***</td>
<td>-0.0007</td>
<td>-0.0021*</td>
</tr>
<tr>
<td>roundasq</td>
<td>-0.0002</td>
<td>0.0004***</td>
<td>0.0007***</td>
</tr>
</tbody>
</table>

...

<table>
<thead>
<tr>
<th></th>
<th>bp</th>
<th>ap</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>943575</td>
<td>943575</td>
<td>943575</td>
</tr>
</tbody>
</table>

- PT effort effects for low values of *rounda*; becomes risk/cold for higher values

Round 3

<table>
<thead>
<tr>
<th></th>
<th>bp</th>
<th>ap</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>roundb</td>
<td>-0.0029**</td>
<td>-0.0016</td>
<td>0.0001</td>
</tr>
<tr>
<td>roundbsq</td>
<td>0.0001</td>
<td>0.0005**</td>
<td>0.0007*</td>
</tr>
</tbody>
</table>

...

<table>
<thead>
<tr>
<th></th>
<th>bp</th>
<th>ap</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>473451</td>
<td>473451</td>
<td>473451</td>
</tr>
</tbody>
</table>
Quadratics

<table>
<thead>
<tr>
<th></th>
<th>Round 1</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(bp)</td>
<td>(ap)</td>
<td>(s)</td>
<td></td>
</tr>
<tr>
<td>rounda</td>
<td>0.0021***</td>
<td>-0.0007</td>
<td>-0.0021*</td>
<td></td>
</tr>
<tr>
<td>roundasq</td>
<td>-0.0002</td>
<td>0.0004***</td>
<td>0.0007***</td>
<td></td>
</tr>
</tbody>
</table>

\[\ldots \]

\[N \quad 943575 \quad 943575 \quad 943575 \]

- PT effort effects for low values of \(\text{rounda} \); becomes risk/cold for higher values

<table>
<thead>
<tr>
<th></th>
<th>Round 3</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(bp)</td>
<td>(ap)</td>
<td>(s)</td>
<td></td>
</tr>
<tr>
<td>roundb</td>
<td>-0.0029**</td>
<td>-0.0016</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>roundbsq</td>
<td>0.0001</td>
<td>0.0005**</td>
<td>0.0007*</td>
<td></td>
</tr>
</tbody>
</table>

\[\ldots \]

\[N \quad 473451 \quad 473451 \quad 473451 \]

- PT risk effects for low \(\text{roundb} \); effort for higher \(\text{roundb} \)
Dummy RHS vars

<table>
<thead>
<tr>
<th></th>
<th>Round 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bp</td>
</tr>
<tr>
<td>roundbd</td>
<td>-0.0031***</td>
</tr>
</tbody>
</table>

...
N | 943575 | 943575 | 943575 |

Lower effort kicks in for larger gains. Supports round 3 interpretation above.
Round 1

<table>
<thead>
<tr>
<th></th>
<th>bp</th>
<th>ap</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>roundbd</td>
<td>-0.0031***</td>
<td>-0.0023**</td>
<td>-0.0001</td>
</tr>
</tbody>
</table>

...

| N | 943575 | 943575 | 943575 |

- Lower effort kicks in for larger gains. Supports round 3 interpretation above
Heterogeneity

▶ Better players may have more ambitious reference points (shoot for better than par)
▶ All players may be more ambitious when holes are easier
▶ Köszegi and Rabin reference points
▶ Also possible better players less influenced by reference points (more standard-rational)
▶ And importance of reference points may vary across holes, shots
Heterogeneity

- Better players may have more ambitious reference points (shoot for better than par)

'K˝ oszegi and Rabin reference points'

Also possible better players less influenced by reference points (more standard-rational)

And importance of reference points may vary across holes, shots
Heterogeneity

- Better players may have more ambitious reference points (shoot for better than par)
- All players may be more ambitious when holes are easier
Heterogeneity

- Better players may have more ambitious reference points (shoot for better than par)
- All players may be more ambitious when holes are easier
- ‘Kőszegi and Rabin reference points’
Heterogeneity

- Better players may have more ambitious reference points (shoot for better than par)
- All players may be more ambitious when holes are easier
- ‘Kőszegi and Rabin reference points’
- Also possible better players less influenced by reference points (more standard-rational)
Heterogeneity

- Better players may have more ambitious reference points (shoot for better than par)
- All players may be more ambitious when holes are easier
- ‘Kőszegi and Rabin reference points’
- Also possible better players less influenced by reference points (more standard-rational)
- And importance of reference points may vary across holes, shots
Hole-difficulty adjusted reference pts

<table>
<thead>
<tr>
<th></th>
<th>Round 1</th>
<th>Round 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(bp)</td>
<td>(ap)</td>
</tr>
<tr>
<td>(\text{adjlastb})</td>
<td>-0.0038***</td>
<td>0.0016</td>
</tr>
<tr>
<td></td>
<td>(0.0012)</td>
<td>(0.0012)</td>
</tr>
<tr>
<td>(\text{adjroundb})</td>
<td>-0.0014***</td>
<td>-0.0003</td>
</tr>
<tr>
<td></td>
<td>(0.0004)</td>
<td>(0.0004)</td>
</tr>
<tr>
<td>(\text{adjtournb})</td>
<td>-0.0014***</td>
<td>0.0002</td>
</tr>
<tr>
<td></td>
<td>(0.0002)</td>
<td>(0.0002)</td>
</tr>
<tr>
<td>(\text{adjlasta})</td>
<td>0.0003</td>
<td>0.0026**</td>
</tr>
<tr>
<td></td>
<td>(0.0010)</td>
<td>(0.0010)</td>
</tr>
<tr>
<td>(\text{adjrounda})</td>
<td>0.0012***</td>
<td>0.0013***</td>
</tr>
<tr>
<td></td>
<td>(0.0004)</td>
<td>(0.0004)</td>
</tr>
<tr>
<td>(\text{adjtourna})</td>
<td>-0.0014***</td>
<td>0.0021***</td>
</tr>
<tr>
<td></td>
<td>(0.0005)</td>
<td>(0.0005)</td>
</tr>
<tr>
<td>(\text{Adj } R^2)</td>
<td>0.099</td>
<td>0.052</td>
</tr>
<tr>
<td>(N)</td>
<td>943575</td>
<td>943575</td>
</tr>
</tbody>
</table>
Hole-difficulty adjusted reference pts

<table>
<thead>
<tr>
<th></th>
<th>Round 1</th>
<th></th>
<th>Round 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bp</td>
<td>ap</td>
<td>s</td>
<td>bp</td>
</tr>
<tr>
<td>adjlastb</td>
<td>-0.0038***</td>
<td>0.0016</td>
<td>0.0053***</td>
<td>-0.0053***</td>
</tr>
<tr>
<td></td>
<td>(0.0012)</td>
<td>(0.0012)</td>
<td>(0.0020)</td>
<td>(0.0017)</td>
</tr>
<tr>
<td>adjroundb</td>
<td>-0.0014***</td>
<td>-0.0003</td>
<td>0.0010</td>
<td>-0.0025***</td>
</tr>
<tr>
<td></td>
<td>(0.0004)</td>
<td>(0.0004)</td>
<td>(0.0007)</td>
<td>(0.0006)</td>
</tr>
<tr>
<td>adjtournb</td>
<td>-0.0015***</td>
<td>0.0002</td>
<td>0.0013***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0002)</td>
<td>(0.0002)</td>
<td>(0.0004)</td>
<td></td>
</tr>
<tr>
<td>adjlasta</td>
<td>0.0003</td>
<td>0.0026**</td>
<td>0.0029</td>
<td>-0.0026*</td>
</tr>
<tr>
<td></td>
<td>(0.0010)</td>
<td>(0.0010)</td>
<td>(0.0018)</td>
<td>(0.0015)</td>
</tr>
<tr>
<td>adjrounda</td>
<td>0.0012***</td>
<td>0.0013***</td>
<td>0.0015**</td>
<td>0.0006</td>
</tr>
<tr>
<td></td>
<td>(0.0004)</td>
<td>(0.0004)</td>
<td>(0.0007)</td>
<td>(0.0006)</td>
</tr>
<tr>
<td>adjtourna</td>
<td>-0.0014***</td>
<td>0.0021***</td>
<td>0.0043***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0005)</td>
<td>(0.0005)</td>
<td>(0.0009)</td>
<td></td>
</tr>
<tr>
<td>Adj R^2</td>
<td>0.099</td>
<td>0.052</td>
<td>0.102</td>
<td>0.087</td>
</tr>
<tr>
<td>N</td>
<td>943575</td>
<td>943575</td>
<td>943575</td>
<td>473451</td>
</tr>
</tbody>
</table>

- Strengthens effects
Front vs back 9

Roundb more important at start of round; lastb more important later
Front vs back 9

<table>
<thead>
<tr>
<th></th>
<th>Front 9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bp</td>
</tr>
<tr>
<td>lastb</td>
<td>-0.0026</td>
</tr>
<tr>
<td>roundb</td>
<td>-0.0034***</td>
</tr>
</tbody>
</table>

...
Front vs back 9

<table>
<thead>
<tr>
<th></th>
<th>Front 9</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bp</td>
<td>ap</td>
<td>s</td>
</tr>
<tr>
<td>lastb</td>
<td>-0.0026</td>
<td>0.0013</td>
<td>0.0041</td>
</tr>
<tr>
<td>roundb</td>
<td>-0.0034</td>
<td>0.0001</td>
<td>0.0028**</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>bp</td>
<td>ap</td>
<td>s</td>
</tr>
<tr>
<td>lastb</td>
<td>-0.0062</td>
<td>0.0007</td>
<td>0.0061**</td>
</tr>
<tr>
<td>roundb</td>
<td>-0.0011</td>
<td>-0.003</td>
<td>0.0008</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

... more important at start of round; lastb more important later...
Front vs back 9

<table>
<thead>
<tr>
<th></th>
<th>Front 9</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bp</td>
<td>ap</td>
<td>s</td>
</tr>
<tr>
<td>lastb</td>
<td>-0.0026</td>
<td>0.0013</td>
<td>0.0041</td>
</tr>
<tr>
<td>roundb</td>
<td>-0.0034***</td>
<td>0.0001</td>
<td>0.0028**</td>
</tr>
</tbody>
</table>

...
Back 9

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bp</td>
<td>ap</td>
</tr>
<tr>
<td>lastb</td>
<td>-0.0062***</td>
<td>0.0007</td>
</tr>
<tr>
<td>roundb</td>
<td>-0.0011**</td>
<td>-0.0003</td>
</tr>
</tbody>
</table>

- roundb more important at start of round; lastb more important later
Player ability
Top players (Rank \leq 200), rd 1

<table>
<thead>
<tr>
<th></th>
<th>bp</th>
<th>ap</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>$lastb$</td>
<td>-0.0027*</td>
<td>-0.0011</td>
<td>0.0013</td>
</tr>
<tr>
<td>$roundb$</td>
<td>-0.0011**</td>
<td>-0.0006</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

...
Player ability

<table>
<thead>
<tr>
<th></th>
<th>Top players (Rank (\leq 200), rd 1)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(bp)</td>
<td>(ap)</td>
</tr>
<tr>
<td>(lastb)</td>
<td>-0.0027*</td>
<td>-0.0011</td>
</tr>
<tr>
<td>(roundb)</td>
<td>-0.0011**</td>
<td>-0.0006</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Rank > 200, rd 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(bp)</td>
<td>(ap)</td>
</tr>
<tr>
<td>(lastb)</td>
<td>-0.0047***</td>
<td>0.0029*</td>
</tr>
<tr>
<td>(roundb)</td>
<td>-0.0014***</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Player ability

<table>
<thead>
<tr>
<th></th>
<th>Top players (Rank ≤ 200), rd 1</th>
<th>Rank > 200, rd 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(bp)</td>
<td>(ap)</td>
</tr>
<tr>
<td>(lastb)</td>
<td>-0.0027*</td>
<td>-0.0011</td>
</tr>
<tr>
<td>(roundb)</td>
<td>-0.0011**,-0.0006</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

- Better players have higher standards (or less PT affected) in round 1
Player ability

But better players are still behavioral
Player ability

<table>
<thead>
<tr>
<th></th>
<th>Top players (Rank ≤ 200), rd 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bp</td>
</tr>
<tr>
<td>lastb</td>
<td>-0.0045**</td>
</tr>
<tr>
<td>roundb</td>
<td>-0.0016**</td>
</tr>
<tr>
<td>tourna</td>
<td>-0.0011**</td>
</tr>
</tbody>
</table>

...
Player ability

But better players are still behavioral

<table>
<thead>
<tr>
<th></th>
<th>Top players (Rank ≤ 200), rd 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bp</td>
</tr>
<tr>
<td>lastb</td>
<td>-0.0045**</td>
</tr>
<tr>
<td>roundb</td>
<td>-0.0016**</td>
</tr>
<tr>
<td>tourney</td>
<td>-0.0011**</td>
</tr>
</tbody>
</table>

...
Shot types

Data on within hole outcomes - start/end locations for all shots

Worth analyzing for 2 reasons:

1. Diff ref pts/momentum may affect diff shots in diff ways

2. Can control for lagged performance on particular shot type to separate momentum, ref pt effects
Shot types

- Data on within hole outcomes - start/end locations for all shots
Shot types

- Data on within hole outcomes - start/end locations for all shots
- Worth analyzing for 2 reasons:
Shot types

- Data on within hole outcomes - start/end locations for all shots
- Worth analyzing for 2 reasons:
 1. Diff ref pts/momentum may affect diff shots in diff ways
Shot types

- Data on within hole outcomes - start/end locations for all shots
- Worth analyzing for 2 reasons:
 1. Diff ref pts/momentum may affect diff shots in diff ways
 2. Can control for lagged performance on particular shot type to separate momentum, ref pt effects
Drives only. Dep vars: (1) = distance; (2) = on fairway (0/1)
Drives only. Dep vars: (1) = distance; (2) = on fairway (0/1)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lastb</td>
<td>-0.2116***</td>
<td>0.0021</td>
</tr>
<tr>
<td>roundb</td>
<td>-0.2191***</td>
<td>0.0016**</td>
</tr>
<tr>
<td>tournb</td>
<td>0.1322***</td>
<td>-0.0011***</td>
</tr>
</tbody>
</table>

Tournb effects imply hot hand bias??. Results are similar for approaches, putts, somewhat weaker - implies importance of salience
Drives only. Dep vars: (1) = distance; (2) = on fairway (0/1)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lastb</td>
<td>-0.2116***</td>
<td>0.0021</td>
</tr>
<tr>
<td>roundb</td>
<td>-0.2191***</td>
<td>0.0016**</td>
</tr>
<tr>
<td>tournb</td>
<td>0.1322***</td>
<td>-0.0011***</td>
</tr>
<tr>
<td>lasta</td>
<td>0.2162***</td>
<td>-0.0005</td>
</tr>
<tr>
<td>rounda</td>
<td>0.2709***</td>
<td>-0.0023**</td>
</tr>
<tr>
<td>tourna</td>
<td>-0.0961***</td>
<td>-0.0004</td>
</tr>
</tbody>
</table>

Tournb effects imply hot hand bias? Results are similar for approaches, putts, somewhat weaker - implies importance of salience
Drives only. Dep vars: (1) = distance; (2) = on fairway (0/1)

<table>
<thead>
<tr>
<th></th>
<th>Rd 3 (w lagged drive controls)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td><code>lastb</code></td>
<td>-0.2116***</td>
</tr>
<tr>
<td><code>roundb</code></td>
<td>-0.2191***</td>
</tr>
<tr>
<td><code>tournb</code></td>
<td>0.1322***</td>
</tr>
<tr>
<td><code>lasta</code></td>
<td>0.2162***</td>
</tr>
<tr>
<td><code>rounda</code></td>
<td>0.2709***</td>
</tr>
<tr>
<td><code>tourney</code></td>
<td>-0.0961***</td>
</tr>
<tr>
<td><code>MAdist</code></td>
<td>0.0593***</td>
</tr>
<tr>
<td><code>MAfair</code></td>
<td>-0.4458***</td>
</tr>
<tr>
<td><code>N</code></td>
<td>356104</td>
</tr>
</tbody>
</table>
Drives only. Dep vars: (1) = distance; (2) = on fairway (0/1)

<table>
<thead>
<tr>
<th></th>
<th>Rd 3 (w lagged drive controls)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>lastb</td>
<td>-0.2116***</td>
<td>0.0021</td>
</tr>
<tr>
<td>roundb</td>
<td>-0.2191***</td>
<td>0.0016**</td>
</tr>
<tr>
<td>tournb</td>
<td>0.1322***</td>
<td>-0.0011***</td>
</tr>
<tr>
<td>lasta</td>
<td>0.2162***</td>
<td>-0.0005</td>
</tr>
<tr>
<td>rounda</td>
<td>0.2709***</td>
<td>-0.0023**</td>
</tr>
<tr>
<td>tourna</td>
<td>-0.0961***</td>
<td>-0.0004</td>
</tr>
<tr>
<td>MAdist</td>
<td>0.0593***</td>
<td>-0.0001</td>
</tr>
<tr>
<td>MAfair</td>
<td>-0.4458***</td>
<td>0.0053**</td>
</tr>
<tr>
<td>N</td>
<td>356104</td>
<td>356104</td>
</tr>
</tbody>
</table>

* Tournb effects imply hot hand bias??
Drives only. Dep vars: (1) = distance; (2) = on fairway (0/1)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>lastb</code></td>
<td>-0.2116***</td>
<td>0.0021</td>
</tr>
<tr>
<td><code>roundb</code></td>
<td>-0.2191***</td>
<td>0.0016**</td>
</tr>
<tr>
<td><code>tournb</code></td>
<td>0.1322***</td>
<td>-0.0011***</td>
</tr>
<tr>
<td><code>lasta</code></td>
<td>0.2162***</td>
<td>-0.0005</td>
</tr>
<tr>
<td><code>rounda</code></td>
<td>0.2709***</td>
<td>-0.0023**</td>
</tr>
<tr>
<td><code>tourna</code></td>
<td>-0.0961***</td>
<td>-0.0004</td>
</tr>
<tr>
<td><code>MAdist</code></td>
<td>0.0593***</td>
<td>-0.0001</td>
</tr>
<tr>
<td><code>MAfair</code></td>
<td>-0.4458***</td>
<td>0.0053**</td>
</tr>
<tr>
<td>N</td>
<td>356104</td>
<td>356104</td>
</tr>
</tbody>
</table>

- Tournb effects imply hot hand bias??
- Results are similar for approaches, putts, somewhat weaker - implies importance of salience
Magnitudes

- Back to LHS = \(\frac{bp}{ap} / s \)
- Marginal effect of birdie/bogey unclear (SR and LR effects on rds/ts)
- More appropriate to estimate joint effects over sets of holes (round or half-round). Impulse response-ish. But more complicated (I think!)
- Use Monte Carlos to estimate performance with joint effects, compare to performance with i.i.d. holes
Magnitudes

- Back to LHS = $bp/ap/s$
Magnitudes

- Back to LHS = \(bp/ap/s \)
- Marginal effect of birdie/bogey unclear (SR and LR effects (dynamics) on \(rds/ts \))
Magnitudes

- Back to LHS = $bp/ap/s$
- Marginal effect of birdie/bogey unclear (SR and LR effects (dynamics) on rds/ts)
- More appropriate to estimate joint effects over sets of holes (round or half-round). Impulse response-ish. But more complicated (I think!)
Magnitudes

- Back to LHS = \(bp/ap/s\)
- Marginal effect of birdie/bogey unclear (SR and LR effects (dynamics) on \(rds/ts\))
- More appropriate to estimate joint effects over sets of holes (round or half-round). Impulse response-ish. But more complicated (I think!)
- Use Monte Carlos to estimate performance w/joint effects, compare to performance with i.i.d. holes
Procedure for estimation of round effect

1. Draw coefficient vector from two multivariate normal distributions, using \(\mathbf{b}_p \) and \(\mathbf{a}_p \) basic model estimates.

2. Draw a score of -1, 0 or +1 for tourney hole 1 using empirical probabilities, 0.195, 0.64, 0.165, respectively.

3. Calculate predicted probabilities for hole 2, \(\hat{\mathbf{b}}_p^2 | \mathbf{s}_1 \) and \(\hat{\mathbf{a}}_p^2 | \mathbf{s}_1 \), draw a score for hole 2.

4. Continue this procedure for holes 3-18; sum scores for holes 1-18 to get a round score.

5. Repeat steps 2-4 100,000 times; store mean to estimate mean round score for the coefficients from step 1.

6. Repeat steps 1-5 1,000 times to obtain an estimated sampling distribution of mean round scores.

7. Use mean as point estimate, 2.5th and 97.5th percentiles as the 95% confidence interval, for the expected round-level score.

8. Subtract i.i.d. performance \((0.165 - 0.195) \times 18 = -0.54\), to get effect.
Procedure for estimation of round effect

1. Draw coefficient vector from two multivariate normal distributions, using bp, ap basic model estimates

2. Draw a score of -1, 0 or +1 for tourney hole 1 using empirical probabilities, 0.195, 0.64, 0.165, resp.

3. Calculate predicted probabilities for hole 2, $\hat{bp}_2 | s_1$ and $\hat{ap}_2 | s_1$, draw a score for hole 2

4. Continue this procedure for holes 3-18; sum scores for holes 1-18 to get a round score

5. Repeat steps 2-4 100,000 times; store mean to estimate mean round score for the coefficients from step 1

6. Repeat steps 1-5 1,000 times to obtain an estimated sampling distribution of mean round scores

7. Use mean as point estimate, 2.5th and 97.5th percentiles as the 95% confidence interval, for the expected round-level score

8. Subtract i.i.d. performance $(0.165-0.195)\times18=-0.54$, to get effect
Procedure for estimation of round effect

1. Draw coefficient vector from two multivariate normal distributions, using bp, ap basic model estimates

2. Draw a score of -1, 0 or +1 for tourney hole 1 using empirical probabilities, 0.195, 0.64, 0.165, resp.

3. Calculate predicted probabilities for hole 2, $\hat{bp}_2 | s_1$ and $\hat{ap}_2 | s_1$, draw a score for hole 2

4. Continue this procedure for holes 3-18; sum scores for holes 1-18 to get a round score

5. Repeat steps 2-4 100,000 times; store mean to estimate mean round score for the coefficients from step 1

6. Repeat steps 1-5 1,000 times to obtain an estimated sampling distribution of mean round scores

7. Use mean as point estimate, 2.5th and 97.5th percentiles as the 95% confidence interval, for the expected round-level score

8. Subtract i.i.d. performance $(0.165-0.195) \times 18 = -0.54$, to get effect
Procedure for estimation of round effect

1. Draw coefficient vector from two multivariate normal distributions, using bp, ap basic model estimates.

2. Draw a score of -1, 0 or +1 for tourney hole 1 using empirical probabilities, 0.195, 0.64, 0.165, resp.

3. Calculate predicted probabilities for hole 2, $bp_2|s_1$ and $ap_2|s_1$, draw a score for hole 2.

4. Continue this procedure for holes 3-18; sum scores for holes 1-18 to get a round score.

5. Repeat steps 2-4 100,000 times; store mean to estimate mean round score for the coefficients from step 1.

6. Repeat steps 1-5 1,000 times to obtain an estimated sampling distribution of mean round scores.

7. Use mean as point estimate, 2.5th and 97.5th percentiles as the 95% confidence interval, for the expected round-level score.

8. Subtract i.i.d. performance $(0.165-0.195)*18=-0.54$, to get effect.
Procedure for estimation of round effect

1. Draw coefficient vector from two multivariate normal distributions, using bp, ap basic model estimates

2. Draw a score of -1, 0 or +1 for tourney hole 1 using empirical probabilities, 0.195, 0.64, 0.165, resp.

3. Calculate predicted probabilities for hole 2, $\hat{bp}_2|s_1$ and $\hat{ap}_2|s_1$, draw a score for hole 2

4. Continue this procedure for holes 3-18; sum scores for holes 1-18 to get a round score

5. Repeat steps 2-4 100,000 times; store mean to estimate mean round score for the coefficients from step 1

6. Repeat steps 1-5 1,000 times to obtain an estimated sampling distribution of mean round scores

7. Use mean as point estimate, 2.5th and 97.5th percentiles as the 95% confidence interval, for the expected round-level score

8. Subtract i.i.d. performance $(0.165-0.195)*18=-0.54$, to get effect
Procedure for estimation of round effect

1. Draw coefficient vector from two multivariate normal distributions, using bp, ap basic model estimates
2. Draw a score of -1, 0 or +1 for tourney hole 1 using empirical probabilities, 0.195, 0.64, 0.165, resp.
3. Calculate predicted probabilities for hole 2, $bp_2 | s_1$ and $ap_2 | s_1$, draw a score for hole 2
4. Continue this procedure for holes 3-18; sum scores for holes 1-18 to get a round score
5. Repeat steps 2-4 100,000 times; store mean to estimate mean round score for the coefficients from step 1
6. Repeat steps 1-5 1,000 times to obtain an estimated sampling distribution of mean round scores
7. Use mean as point estimate, 2.5th and 97.5th percentiles as the 95% confidence interval, for the expected round-level score
8. Subtract i.i.d. performance $(0.165 - 0.195) \times 18 = -0.54$, to get effect
Procedure for estimation of round effect

1. Draw coefficient vector from two multivariate normal distributions, using bp, ap basic model estimates.

2. Draw a score of -1, 0 or +1 for tourney hole 1 using empirical probabilities, 0.195, 0.64, 0.165, resp.

3. Calculate predicted probabilities for hole 2, $b\hat{p}_2|s_1$ and $a\hat{p}_2|s_1$, draw a score for hole 2.

4. Continue this procedure for holes 3-18; sum scores for holes 1-18 to get a round score.

5. Repeat steps 2-4 100,000 times; store mean to estimate mean round score for the coefficients from step 1.

6. Repeat steps 1-5 1,000 times to obtain an estimated sampling distribution of mean round scores.

7. Use mean as point estimate, 2.5th and 97.5th percentiles as the 95% confidence interval, for the expected round-level score.

8. Subtract i.i.d. performance $(0.165-0.195)*18=-0.54$, to get effect.
1. Draw coefficient vector from two multivariate normal distributions, using b_p, a_p basic model estimates

2. Draw a score of -1, 0 or +1 for tourney hole 1 using empirical probabilities, 0.195, 0.64, 0.165, resp.

3. Calculate predicted probabilities for hole 2, $\hat{b}_p^2|s_1$ and $\hat{a}_p^2|s_1$, draw a score for hole 2

4. Continue this procedure for holes 3-18; sum scores for holes 1-18 to get a round score

5. Repeat steps 2-4 100,000 times; store mean to estimate mean round score for the coefficients from step 1

6. Repeat steps 1-5 1,000 times to obtain an estimated sampling distribution of mean round scores

7. Use mean as point estimate, 2.5th and 97.5th percentiles as the 95% confidence interval, for the expected round-level score
Procedure for estimation of round effect

1. Draw coefficient vector from two multivariate normal distributions, using bp, ap basic model estimates
2. Draw a score of -1, 0 or +1 for tourney hole 1 using empirical probabilities, 0.195, 0.64, 0.165, resp.
3. Calculate predicted probabilities for hole 2, $bp_2|s_1$ and $ap_2|s_1$, draw a score for hole 2
4. Continue this procedure for holes 3-18; sum scores for holes 1-18 to get a round score
5. Repeat steps 2-4 100,000 times; store mean to estimate mean round score for the coefficients from step 1
6. Repeat steps 1-5 1,000 times to obtain an estimated sampling distribution of mean round scores
7. Use mean as point estimate, 2.5th and 97.5th percentiles as the 95% confidence interval, for the expected round-level score
8. Subtract i.i.d. performance $(0.165-0.195) \times 18 = -0.54$, to get effect
Results (almost all signif)

<table>
<thead>
<tr>
<th></th>
<th>Full Round</th>
<th>Back 9, $roundb = 5$ (at start)</th>
<th>Back 9, $rounda = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round 1</td>
<td>0.033</td>
<td>0.044</td>
<td>0.104</td>
</tr>
<tr>
<td>Rd 3, $tsb = 5$</td>
<td>0.169</td>
<td>0.128</td>
<td>0.166</td>
</tr>
<tr>
<td>Rd 3, $tsb = tsa = 0$</td>
<td>0.088</td>
<td>0.057</td>
<td>0.104</td>
</tr>
<tr>
<td>Rd 3, $tsa = 5$</td>
<td>0.231</td>
<td>0.123</td>
<td>0.164</td>
</tr>
</tbody>
</table>

Less than 1% (mean rd score around 70)

- PS estimate 0.25 strokes per rd and > $100k/yr for top players; Brown (JPE, 2011), 0.2 strokes per rd
- Some of our estimates much smaller due to negative feedback (prospect theory in domain of gains)
- Some of ours are in their ballpark (0.231 for round, 0.166 for half-round)
- And attenuated since don’t account for heterogeneous ref pts (here)
- Precise b/c of large samples and negative covariances of coefficients
Results (almost all signif)

<table>
<thead>
<tr>
<th></th>
<th>Full Round</th>
<th>Back 9, $roundb = 5$ (at start)</th>
<th>Back 9, $rounda = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round 1</td>
<td>0.033</td>
<td>0.044</td>
<td>0.104</td>
</tr>
<tr>
<td>Rd 3, $tsb = 5$</td>
<td>0.169</td>
<td>0.128</td>
<td>0.166</td>
</tr>
<tr>
<td>Rd 3, $tsb = tsa = 0$</td>
<td>0.088</td>
<td>0.057</td>
<td>0.104</td>
</tr>
<tr>
<td>Rd 3, $tsa = 5$</td>
<td>0.231</td>
<td>0.123</td>
<td>0.164</td>
</tr>
</tbody>
</table>

- Less than 1% (mean rd score around 70)
Results (almost all signif)

<table>
<thead>
<tr>
<th></th>
<th>Full Round</th>
<th>Back 9, $roundb = 5$ (at start)</th>
<th>Back 9, $rounda = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round 1</td>
<td>0.033</td>
<td>0.044</td>
<td>0.104</td>
</tr>
<tr>
<td>Rd 3, $t sb = 5$</td>
<td>0.169</td>
<td>0.128</td>
<td>0.166</td>
</tr>
<tr>
<td>Rd 3, $t sb = t sa = 0$</td>
<td>0.088</td>
<td>0.057</td>
<td>0.104</td>
</tr>
<tr>
<td>Rd 3, $t sa = 5$</td>
<td>0.231</td>
<td>0.123</td>
<td>0.164</td>
</tr>
</tbody>
</table>

- Less than 1% (mean rd score around 70)
- PS estimate 0.25 strokes per rd and $\geq \$100k/yr$ for top players; Brown (JPE, 2011), 0.2 strokes per rd

Some of our estimates much smaller due to negative feedback (prospect theory in domain of gains)

Some of ours are in their ballpark (0.231 for round, 0.166 for half-round)

And attenuated since don’t account for heterogeneous ref pts (here)

Precise b/c of large samples and negative covariances of coefficients
Results (almost all signif)

<table>
<thead>
<tr>
<th></th>
<th>Full Round</th>
<th>Back 9, $roundb = 5$ (at start)</th>
<th>Back 9, $rounda = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round 1</td>
<td>0.033</td>
<td>0.044</td>
<td>0.104</td>
</tr>
<tr>
<td>Rd 3, $tsb = 5$</td>
<td>0.169</td>
<td>0.128</td>
<td>0.166</td>
</tr>
<tr>
<td>Rd 3, $tsb = tsa = 0$</td>
<td>0.088</td>
<td>0.057</td>
<td>0.104</td>
</tr>
<tr>
<td>Rd 3, $tsa = 5$</td>
<td>0.231</td>
<td>0.123</td>
<td>0.164</td>
</tr>
</tbody>
</table>

- Less than 1% (mean rd score around 70)
- PS estimate 0.25 strokes per rd and > $100k/yr for top players; Brown (JPE, 2011), 0.2 strokes per rd
- Some of our estimates much smaller due to negative feedback (prospect theory in domain of gains)
Results (almost all signif)

<table>
<thead>
<tr>
<th></th>
<th>Full Round</th>
<th>Back 9, $roundb = 5$ (at start)</th>
<th>Back 9, $rounda = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round 1</td>
<td>0.033</td>
<td>0.044</td>
<td>0.104</td>
</tr>
<tr>
<td>Rd 3, $tsb = 5$</td>
<td>0.169</td>
<td>0.128</td>
<td>0.166</td>
</tr>
<tr>
<td>Rd 3, $tsb = tsa = 0$</td>
<td>0.088</td>
<td>0.057</td>
<td>0.104</td>
</tr>
<tr>
<td>Rd 3, $tsa = 5$</td>
<td>0.231</td>
<td>0.123</td>
<td>0.164</td>
</tr>
</tbody>
</table>

- Less than 1% (mean rd score around 70)
- PS estimate 0.25 strokes per rd and \geq $100k/yr for top players; Brown (JPE, 2011), 0.2 strokes per rd
- Some of our estimates much smaller due to negative feedback (prospect theory in domain of gains)
- Some of ours are in their ballpark (0.231 for round, 0.166 for half-round)
Results (almost all signif)

<table>
<thead>
<tr>
<th></th>
<th>Full Round</th>
<th>Back 9, $roundb = 5$ (at start)</th>
<th>Back 9, $rounda = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round 1</td>
<td>0.033</td>
<td>0.044</td>
<td>0.104</td>
</tr>
<tr>
<td>Rd 3, $tsb = 5$</td>
<td>0.169</td>
<td>0.128</td>
<td>0.166</td>
</tr>
<tr>
<td>Rd 3, $tsb = tsa = 0$</td>
<td>0.088</td>
<td>0.057</td>
<td>0.104</td>
</tr>
<tr>
<td>Rd 3, $tsa = 5$</td>
<td>0.231</td>
<td>0.123</td>
<td>0.164</td>
</tr>
</tbody>
</table>

- Less than 1% (mean rd score around 70)
- PS estimate 0.25 strokes per rd and > $100k/yr for top players; Brown (JPE, 2011), 0.2 strokes per rd
- Some of our estimates much smaller due to negative feedback (prospect theory in domain of gains)
- Some of ours are in their ballpark (0.231 for round, 0.166 for half-round)
- And attenuated since don’t account for heterogeneous ref pts (here)
Results (almost all signif)

<table>
<thead>
<tr>
<th></th>
<th>Full Round</th>
<th>Back 9, (roundb = 5) (at start)</th>
<th>Back 9, (rounda = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round 1</td>
<td>0.033</td>
<td>0.044</td>
<td>0.104</td>
</tr>
<tr>
<td>Rd 3, (tsb = 5)</td>
<td>0.169</td>
<td>0.128</td>
<td>0.166</td>
</tr>
<tr>
<td>Rd 3, (tsb = tsa = 0)</td>
<td>0.088</td>
<td>0.057</td>
<td>0.104</td>
</tr>
<tr>
<td>Rd 3, (tsa = 5)</td>
<td>0.231</td>
<td>0.123</td>
<td>0.164</td>
</tr>
</tbody>
</table>

- Less than 1% (mean rd score around 70)
- PS estimate 0.25 strokes per rd and \(> $100k/yr \) for top players; Brown (JPE, 2011), 0.2 strokes per rd
- Some of our estimates much smaller due to negative feedback (prospect theory in domain of gains)
- Some of ours are in their ballpark (0.231 for round, 0.166 for half-round)
- And attenuated since don’t account for heterogeneous ref pts (here)
- Precise b/c of large samples and negative covariances of coefficients
Wrapping up

Prospect theory effects exist, dominate hot hand effects for 3 new reference pts

Evidence of greater conservatism in domain of gains, 'shirking' when further into domain of gains

Some PT effort and risk effects in domain of losses but stronger cold hand effects

Reference points adjust based on many factors (hole difficulty, player ability, part of round), hard to nail down, but matter
Wrapping up

- Prospect theory effects exist, dominate hot hand effects for 3 new reference pts
Wrapping up

- Prospect theory effects exist, dominate hot hand effects for 3 new reference pts
- Evidence of greater conservatism in domain of gains, ‘shirking’ when further into domain of gains
Wrapping up

- Prospect theory effects exist, dominate hot hand effects for 3 new reference points.
- Evidence of greater conservatism in domain of gains, ‘shirking’ when further into domain of gains.
- Some PT effort and risk effects in domain of losses but stronger cold hand effects.
Wrapping up

- Prospect theory effects exist, dominate hot hand effects for 3 new reference pts
- Evidence of greater conservatism in domain of gains, ‘shirking’ when further into domain of gains
- Some PT effort and risk effects in domain of losses but stronger cold hand effects
- Reference points adjust based on many factors (hole difficulty, player ability, part of round), hard to nail down, but matter
Interpretation/speculation/questions

Hot hand maybe dominated due to small effects or measurement error (Stone, 2012)

(Or maybe hot hand bias causes reduced PT effort effect??)

Why does cold hand dominate deep in domain of losses?

Maybe stronger than HH (can lose confidence more easily than gain)

Maybe try *too* hard then (choking)

I.e. prospect theory effort causes cold hand

Or maybe give up when scores high above par

(Due to flattening value function, again caused by PT)

And future cold hand could mean it's '2nd best' to focus on avoiding bogey on current hole when putting

I.e. cold hand causes PS prospect theory effect!

Bottom line: momentum and PT both exist and maybe related in deep ways that I won't resolve...
Interpretation/speculation/questions

- Hot hand maybe dominated due to small effects or measurement error (Stone, 2012)
Interpretation/speculation/questions

- Hot hand maybe dominated due to small effects or measurement error (Stone, 2012)
- (Or maybe hot hand bias causes reduced PT effort effect??)
Interpretation/speculation/questions

- Hot hand maybe dominated due to small effects or measurement error (Stone, 2012)
- (Or maybe hot hand bias causes reduced PT effort effect??)
- Why does cold hand dominate deep in domain of losses?

- Maybe stronger than HH (can lose confidence more easily than gain)
- Maybe try *too* hard then (choking)
- I.e. prospect theory effort causes cold hand
- Or maybe give up when scores high above par
 - (Due to flattening value function, again caused by PT)
- And future cold hand could mean it’s ‘2nd best’ to focus on avoiding bogey on current hole when putting
- I.e. cold hand causes PS prospect theory effect!

Bottom line: momentum and PT both exist and maybe related in deep ways that I won’t resolve...
Interpretation/speculation/questions

- Hot hand maybe dominated due to small effects or measurement error (Stone, 2012)

- (Or maybe hot hand bias causes reduced PT effort effect??)

- Why does cold hand dominate deep in domain of losses?
- Maybe stronger than HH (can lose confidence more easily than gain)
Interpretation/speculation/questions

- Hot hand maybe dominated due to small effects or measurement error (Stone, 2012)
- (Or maybe hot hand bias causes reduced PT effort effect??)

- Why does cold hand dominate deep in domain of losses?
- Maybe stronger than HH (can lose confidence more easily than gain)
- Maybe try *too* hard then (choking)

- I.e. prospect theory effort causes cold hand
- Or maybe give up when scores high above par (Due to flattening value function, again caused by PT)
- And future cold hand could mean it’s ‘2nd best’ to focus on avoiding bogey on current hole when putting
- I.e. cold hand causes PS prospect theory effect!

- Bottom line: momentum and PT both exist and maybe related in deep ways that I won’t resolve...
Interpretation/speculation/questions

- Hot hand maybe dominated due to small effects or measurement error (Stone, 2012)
- (Or maybe hot hand bias causes reduced PT effort effect??)

- Why does cold hand dominate deep in domain of losses?
- Maybe stronger than HH (can lose confidence more easily than gain)
- Maybe try *too* hard then (choking)
- I.e. prospect theory effort causes cold hand

- Or maybe give up when scores high above par
 (Due to flattening value function, again caused by PT)
- And future cold hand could mean it's '2nd best' to focus on avoiding bogey on current hole when putting
- I.e. cold hand causes PS prospect theory effect!

- Bottom line: momentum and PT both exist and maybe related in deep ways that I won't resolve...
Interpretation/speculation/questions

- Hot hand maybe dominated due to small effects or measurement error (Stone, 2012)
- (Or maybe hot hand bias causes reduced PT effort effect??)

- Why does cold hand dominate deep in domain of losses?
- Maybe stronger than HH (can lose confidence more easily than gain)
- Maybe try *too* hard then (choking)
- I.e. prospect theory effort causes cold hand
- Or maybe give up when scores high above par
Interpretation/speculation/questions

- Hot hand maybe dominated due to small effects or measurement error (Stone, 2012)
- (Or maybe hot hand bias causes reduced PT effort effect??)
- Why does cold hand dominate deep in domain of losses?
 - Maybe stronger than HH (can lose confidence more easily than gain)
 - Maybe try *too* hard then (choking)
 - I.e. prospect theory effort causes cold hand
 - Or maybe give up when scores high above par
 - (Due to flattening value function, again caused by PT)
Interpretation/speculation/questions

- Hot hand maybe dominated due to small effects or measurement error (Stone, 2012)
 - (Or maybe hot hand bias causes reduced PT effort effect??)

- Why does cold hand dominate deep in domain of losses?
- Maybe stronger than HH (can lose confidence more easily than gain)
- Maybe try *too* hard then (choking)
- I.e. prospect theory effort causes cold hand
- Or maybe give up when scores high above par
 - (Due to flattening value function, again caused by PT)

- And future cold hand could mean it’s ‘2nd best’ to focus on avoiding bogey on current hole when putting
Interpretation/speculation/questions

- Hot hand maybe dominated due to small effects or measurement error (Stone, 2012)
- (Or maybe hot hand bias causes reduced PT effort effect??)

- Why does cold hand dominate deep in domain of losses?
- Maybe stronger than HH (can lose confidence more easily than gain)
- Maybe try *too* hard then (choking)
- I.e. prospect theory effort causes cold hand
- Or maybe give up when scores high above par
- (Due to flattening value function, again caused by PT)

- And future cold hand could mean it’s ‘2nd best’ to focus on avoiding bogey on current hole when putting
- I.e. cold hand causes PS prospect theory effect!
Interpretation/speculation/questions

- Hot hand maybe dominated due to small effects or measurement error (Stone, 2012)
- (Or maybe hot hand bias causes reduced PT effort effect??)

- Why does cold hand dominate deep in domain of losses?
- Maybe stronger than HH (can lose confidence more easily than gain)
- Maybe try *too* hard then (choking)
- I.e. prospect theory effort causes cold hand
- Or maybe give up when scores high above par
- (Due to flattening value function, again caused by PT)

- And future cold hand could mean it’s ‘2nd best’ to focus on avoiding bogey on current hole when putting
- I.e. cold hand causes PS prospect theory effect!

- Bottom line: momentum and PT both exist and maybe related in deep ways that I won’t resolve...