Media and Gridlock

Daniel F. Stone

9th Media Economics Workshop - New Economic School
October 2011
Gridlock in U.S. appears to have increased in recent years
Gridlock in U.S. appears to have increased in recent years

- Anecdotal evidence: minority party tried to block major new policy proposals (social security, health care reform, jobs bill?)
Gridlock in U.S. appears to have increased in recent years

- Anecdotal evidence: minority party tried to block major new policy proposals (social security, health care reform, jobs bill?)

- Term ‘gridlock’ only coined after 1980 elections
Gridlock in U.S. appears to have increased in recent years

- Anecdotal evidence: minority party tried to block major new policy proposals (social security, health care reform, jobs bill?)

- Term ‘gridlock’ only coined after 1980 elections

- Binder (1999): hard evidence of increasing gridlock in 80s and 90s (term coined in 80s)
Gridlock in U.S. appears to have increased in recent years

- Anecdotal evidence: minority party tried to block major new policy proposals (social security, health care reform, jobs bill?)

- Term ‘gridlock’ only coined after 1980 elections

- Binder (1999): hard evidence of increasing gridlock in 80s and 90s (term coined in 80s)

- Cloture motions way up over time, especially in last two Congresses
Gridlock in U.S. appears to have increased in recent years

- Anecdotal evidence: minority party tried to block major new policy proposals (social security, health care reform, jobs bill?)

- Term ‘gridlock’ only coined after 1980 elections

- Binder (1999): hard evidence of increasing gridlock in 80s and 90s (term coined in 80s)

- Cloture motions way up over time, especially in last two Congresses
I examine the relation between media and strategic obstructionism
I examine the relation between media and strategic obstructionism

- Previous lit: media and electoral competition; platform formation; actions of winners once in office (Prat and Strömberg, WP, 2011)
I examine the relation between media and strategic obstructionism

- Previous lit: media and electoral competition; platform formation; actions of winners once in office (Prat and Strömberg, WP, 2011)

- I model most salient aspect of legislative process: whether losing party obstructs or not
I examine the relation between media and strategic obstructionism

- Previous lit: media and electoral competition; platform formation; actions of winners once in office (Prat and Strömberg, WP, 2011)

- I model most salient aspect of legislative process: whether losing party obstructs or not

- Main result: strategic obstructionism makes effect of less informative media even worse

- Not only bad policy more likely proposed, but good policy more likely blocked
Other related literature

Political science literature focuses on party polarization (Layman et al, APSR, 2006) - i.e. ideology dispersion - as gridlock cause.

My paper: can interpret as highlighting necessary role of uninformative media.

Or as providing alternative explanation.

In fact, maybe alternative explanation for stylized fact of party polarization?

(Politicians only acting more polarized -
Political science literature focuses on party polarization (Layman et al, APSR, 2006) - i.e. ideology dispersion - as gridlock cause.
Other related literature

- Political science literature focuses on party polarization (Layman et al, APSR, 2006) - i.e. ideology dispersion - as gridlock cause

- My paper: can interpret as highlighting necessary role of uninformative media
Other related literature

- Political science literature focuses on party polarization (Layman et al, APSR, 2006) - i.e. ideology dispersion - as gridlock cause

- My paper: can interpret as highlighting necessary role of uninformative media

- Or as providing alternative explanation
Political science literature focuses on party polarization (Layman et al, APSR, 2006) - i.e. ideology dispersion - as gridlock cause.

- My paper: can interpret as highlighting necessary role of uninformative media.
- Or as providing alternative explanation.
- In fact, maybe alternative explanation for stylized fact of party polarization?
Other related literature

- Political science literature focuses on party polarization (Layman et al, APSR, 2006) - i.e. ideology dispersion - as gridlock cause.

- My paper: can interpret as highlighting necessary role of uninformative media.

- Or as providing alternative explanation.

- In fact, maybe alternative explanation for stylized fact of party polarization?

- (Politicians only acting more polarized -)
The model

Two political parties, a majority and minority

- Majority proposes policy, \(X\)
 - Either efficient, \(E\), or partisan and deadweight loss, \(D\) \((X \in \{D, E\})\)
- Minority then takes action, \(Y\)
 - Either accept, \(A\), or block, \(B\) \((Y \in \{A, B\})\)

Based on US system where minority party can block policy by filibuster

- If \((X, Y) = (D, A)\), then \(\alpha\) benefit to majority, \(\alpha\) cost to minority, and social loss
- If \((X, Y) = (E, A)\), then 0 benefit (cost) to majority (minority), social gain

Status quo, \(B\) payoff 0 for all
The model

- Two political parties, a majority and minority

- Either efficient, E, or partisan and deadweight loss, D ($X \in \{D, E\}$)

- Minority then takes action Y
 - Either accept (A) or block (B) ($Y \in \{A, B\}$)

- Based on US system where minority party can block policy by filibuster

- If $(X, Y) = (D, A)$, then α benefit to majority, α cost to minority, and social loss

- If $(X, Y) = (E, A)$, then 0 benefit (cost) to majority (minority), social gain

- Status quo (B) payoff 0 for all
The model

- Two political parties, a majority and minority
- Majority proposes policy, X

Either efficient, E, or partisan and deadweight loss, D ($X \in \{D, E\}$)

Minority then takes action Y

Either accept (A) or block (B) ($Y \in \{A, B\}$)

Based on US system where minority party can block policy by filibuster

If $(X, Y) = (D, A)$, then α benefit to majority, α cost to minority, social loss

If $(X, Y) = (E, A)$, then 0 benefit (cost) to majority (minority), social gain

Status quo (B) payoff 0 for all
The model

- Two political parties, a majority and minority
- Majority proposes policy, X
- Either efficient, E, or partisan and deadweight loss, D ($X \in \{D, E\}$)
The model

- Two political parties, a majority and minority
- Majority proposes policy, X
- Either efficient, E, or partisan and deadweight loss, D ($X \in \{D, E\}$)
- Minority then takes action Y

- If $(X, Y) = (D, A)$, then α benefit to majority, α cost to minority, and social loss
- If $(X, Y) = (E, A)$, then 0 benefit (cost) to majority (minority), social gain
- Status quo (B) payoff 0 for all
The model

- Two political parties, a majority and minority
- Majority proposes policy, X
- Either efficient, E, or partisan and deadweight loss, D ($X \in \{D, E\}$)
- Minority then takes action Y
- Either accept (A) or block (B) ($Y \in \{A, B\}$)
The model

- Two political parties, a majority and minority
- Majority proposes policy, X
- Either efficient, E, or partisan and deadweight loss, D ($X \in \{D, E\}$)
- Minority then takes action Y
- Either accept (A) or block (B) ($Y \in \{A, B\}$)
- Based on US system where minority party can block policy by filibuster
The model

- Two political parties, a majority and minority
- Majority proposes policy, X
- Either efficient, E, or partisan and deadweight loss, D ($X \in \{D, E\}$)
- Minority then takes action Y
- Either accept (A) or block (B) ($Y \in \{A, B\}$)
- Based on US system where minority party can block policy by filibuster
- $X =$ post-bargaining proposal (bargaining process exogenous)
The model

- Two political parties, a majority and minority
- Majority proposes policy, X
- Either efficient, E, or partisan and deadweight loss, D ($X \in \{D, E\}$)
- Minority then takes action Y
- Either accept (A) or block (B) ($Y \in \{A, B\}$)
- Based on US system where minority party can block policy by filibuster
- $X = \text{post-bargaining proposal (bargaining process exogenous)}$
- If $(X, Y) = (D, A)$, then α benefit to majority, α cost to minority, and social loss
The model

- Two political parties, a majority and minority
- Majority proposes policy, X
- Either efficient, E, or partisan and deadweight loss, D ($X \in \{D, E\}$)
- Minority then takes action Y
- Either accept (A) or block (B) ($Y \in \{A, B\}$)
- Based on US system where minority party can block policy by filibuster
- $X =$ post-bargaining proposal (bargaining process exogenous)
- If $(X, Y) = (D, A)$, then α benefit to majority, α cost to minority, and social loss
- If $(X, Y) = (E, A)$, then 0 benefit (cost) to majority (minority), social gain
The model

- Two political parties, a majority and minority
- Majority proposes policy, X
- Either efficient, E, or partisan and deadweight loss, D ($X \in \{D, E\}$)
- Minority then takes action Y
- Either accept (A) or block (B) ($Y \in \{A, B\}$)
- Based on US system where minority party can block policy by filibuster
- $X =$ post-bargaining proposal (bargaining process exogenous)
- If $(X, Y) = (D, A)$, then α benefit to majority, α cost to minority, and social loss
- If $(X, Y) = (E, A)$, then 0 benefit (cost) to majority (minority), social gain
- Status quo (B) payoff 0 for all
With $\phi \in (0.5, 1)$, the minority has private information I on X (denoted $I = \text{E}$ or $I = \text{D}$), otherwise, $I = \emptyset$.

Before minority acts, news reports $r \in \{r_E, r_D\}$.

'Public opinion' based on reports boiled down to policy = 'bad'/'good', publicly observable.

Media environment parameterized by $\pi = \Pr(r = r_E | E) = \Pr(r = r_D | D) \in [0, 1]$.

Media behavior/incentives not modeled explicitly (focus of other lit).
With prob $\phi \in (0.5, 1)$ the minority has private information l on X (denoted $l = E$ or $l = D$), otherwise, $l = \emptyset$.
With prob $\phi \in (0.5, 1)$ the minority has private information I on X (denoted $I = E$ or $I = D$), otherwise, $I = \emptyset$.

Before minority acts, news reports $r \in \{r_D, r_E\}$.
- With prob $\phi \in (0.5, 1)$ the minority has private information I on X (denoted $I = E$ or $I = D$), otherwise, $I = \emptyset$
- Before minority acts, news reports $r \in \{r_D, r_E\}$
- ‘Public opinion’ based on reports boiled down to policy = ‘bad’/‘good’; publicly observable
With prob $\phi \in (0.5, 1)$ the minority has private information I on X (denoted $I = E$ or $I = D$), otherwise, $I = \emptyset$

Before minority acts, news reports $r \in \{r_D, r_E\}$

‘Public opinion’ based on reports boiled down to policy = ‘bad’/‘good’; publicly observable

Media environment parameterized by

$$\pi = Pr(r = r_E|E) = Pr(r = r_D|D) \in [0.5, 1]$$
With prob $\phi \in (0.5, 1)$ the minority has private information I on X (denoted $I = E$ or $I = D$), otherwise, $I = \emptyset$

Before minority acts, news reports $r \in \{r_D, r_E\}$

‘Public opinion’ based on reports boiled down to policy = ‘bad’/‘good’; publicly observable

Media environment parameterized by

$\pi = Pr(r = r_E|E) = Pr(r = r_D|D) \in [0.5, 1]$

Media behavior/incentives not modeled explicitly (focus of other lit)
Claim: new media environment represented by lower π
Claim: new media environment represented by lower π

- As we all know, new media—cable television, Internet—has emerged, and old media declined.
Claim: new media environment represented by lower π

- As we all know, new media—cable television, Internet—has emerged, and old media declined.

- Why less informative?

- More partisan (cite)
- Faster news cycle, less vetting
- Newspapers cutting staff, oversight; Internet media less careful
- Views of public
Claim: new media environment represented by lower π

- As we all know, new media—cable television, Internet—has emerged, and old media declined

- Why less informative?
- 1. More partisan (cite)
Claim: new media environment represented by lower π

- As we all know, new media—cable television, Internet—has emerged, and old media declined.
- Why less informative?
 - 1. More partisan (cite)
 - 2. Faster news cycle, less vetting
Claim: new media environment represented by lower π

- As we all know, new media—cable television, Internet—has emerged, and old media declined.
- Why less informative?
 - 1. More partisan (cite)
 - 2. Faster news cycle, less vetting
 - 3. Newspapers cutting staff, oversight; Internet media less careful
Claim: new media environment represented by lower π

- As we all know, new media—cable television, Internet—has emerged, and old media declined

- Why less informative?
 - 1. More partisan (cite)
 - 2. Faster news cycle, less vetting
 - 3. Newspapers cutting staff, oversight; Internet media less careful
 - 4. Views of public
 graph
Each party one of two types, high or low ($\theta_i \in \{\bar{\theta}, \theta\}$)

Conventional interpretation: centrist/extremist or competent/incompetent

More realistic (?) given rise in anger (Pew research, April, 2010), questioning of motives (accusations of "playing politics"): idealist/cynic

If $\theta_{maj} = \bar{\theta}$, $X = E$

If $\theta_{min} = \bar{\theta}$, $Y = A$ iff ($I = E$) or ($I = \emptyset$, $r = r_E$)

If either party is the low type, then acts like high type with probability $\epsilon \in (0, 0.5)$

Otherwise, acts strategically
Each party one of two types, high or low ($\theta_i \in \{\bar{\theta}, \theta\}$).
Each party one of two types, high or low ($\theta_i \in \{\bar{\theta}, \theta\}$)

Conventional interpretation: centrist/extremist or competent/incompetent

If $\theta_{maj} = \bar{\theta}$, $X = E$

If $\theta_{min} = \bar{\theta}$, $Y = A$ iff ($I = E$) or ($I = \emptyset, r = r_E$)

If either party is the low type, then acts like high type with probability $\epsilon \in (0, 0.5)$

Otherwise, acts strategically
Each party one of two types, high or low ($\theta_i \in \{\bar{\theta}, \theta\}$)

Conventional interpretation: centrist/extremist or competent/incompetent

More realistic (?) given rise in anger (Pew research, April, 2010), questioning of motives (accusations of “playing politics”): idealist/cynic
Each party one of two types, high or low ($\theta_i \in \{\bar{\theta}, \theta\}$)

Conventional interpretation: centrist/extremist or competent/incompetent

More realistic (?) given rise in anger (Pew research, April, 2010), questioning of motives (accusations of “playing politics”): idealist/cynic

If $\theta_{maj} = \bar{\theta}$, $X = E$
Each party one of two types, high or low ($\theta_i \in \{\bar{\theta}, \emptyset\}$)

Conventional interpretation: centrist/extremist or competent/incompetent

More realistic (?) given rise in anger (Pew research, April, 2010), questioning of motives (accusations of “playing politics”): idealist/cynic

If $\theta_{maj} = \bar{\theta}$, $X = E$

If $\theta_{min} = \bar{\theta}$, $Y = A$ iff ($I = E$) or ($I = \emptyset$, $r = r_E$)
Each party one of two types, high or low \((\theta_i \in \{\bar{\theta}, \theta\}) \)

Conventional interpretation: centrist/extremist or competent/incompetent

More realistic (?) given rise in anger (Pew research, April, 2010), questioning of motives (accusations of “playing politics”): idealist/cynic

- If \(\theta_{maj} = \bar{\theta} \), \(X = E \)
- If \(\theta_{min} = \bar{\theta} \), \(Y = A \) iff \((I = E) \) or \((I = \emptyset, r = r_E) \)
- If either party is the low type, then acts like high type with probability \(\epsilon \in (0, 0.5) \)
Each party one of two types, high or low ($\theta_i \in \{\bar{\theta}, \theta\}$)

- Conventional interpretation: centrist/extremist or competent/incompetent
- More realistic (?) given rise in anger (Pew research, April, 2010), questioning of motives (accusations of “playing politics”): idealist/cynic
- If $\theta_{maj} = \bar{\theta}$, $X = E$
- If $\theta_{min} = \bar{\theta}$, $Y = A$ iff ($I = E$) or ($I = \emptyset, r = r_E$)
- If either party is the low type, then acts like high type with probability $\epsilon \in (0, 0.5)$
- Otherwise, acts strategically
3 types of voters: liberals, conservatives and centrists.

Centrists' priors that parties are the high type are λ_{maj} and λ_{min}, with $\lambda_{\text{maj}} > \lambda_{\text{min}}$.

Liberals/conservatives always vote the same way (so analysis can ignore).

\[
\text{Prob(majority re-elected)} = f\left(\sim \lambda_{\text{maj}} - \sim \lambda_{\text{min}}\right),
\]

\[f'(\cdot) > 0\]

With probability $\psi \in (0.5, 1)$, majority objective function:

\[
u_{\text{maj}} = f\left(\sim \lambda_{\text{maj}} - \sim \lambda_{\text{min}}\right) + \alpha \Pr(A|X = D) I(X = D)
\]

With probability $1 - \psi$ myopic (transient property).

Minority objective function:

\[
u_{\text{min}} = -u_{\text{maj}}
\]
3 types of voters: liberals, conservatives and centrists
3 types of voters: liberals, conservatives and centrists

Centrists’ priors that parties are the high type are λ_{maj} and λ_{min}, with $\lambda_{maj} > \lambda_{min}$
- 3 types of voters: liberals, conservatives and centrists
- Centrists’ priors that parties are the high type are λ_{maj} and λ_{min}, with $\lambda_{maj} > \lambda_{min}$
- Liberals/conservatives always vote same way (so analysis can ignore)
3 types of voters: liberals, conservatives and centrists

Centrists’ priors that parties are the high type are λ_{maj} and λ_{min}, with $\lambda_{maj} > \lambda_{min}$

Liberals/conservatives always vote same way (so analysis can ignore)

Prob(majority re-elected) = $f(\tilde{\lambda}_{maj} - \tilde{\lambda}_{min})$, $f'(\cdot) > 0$
3 types of voters: liberals, conservatives and centrists

- Centrists’ priors that parties are the high type are λ_{maj} and λ_{min}, with $\lambda_{maj} > \lambda_{min}$
- Liberals/conservatives always vote the same way (so analysis can ignore)
- $\text{Prob(majority re-elected)} = f(\lambda_{maj} - \lambda_{min}), \ f'(\cdot) > 0$
- With probability $\psi \in (0.5, 1)$, majority objective function:
 $$u_{maj} = f(\lambda_{maj} - \lambda_{min}) + \alpha \Pr(A|X = D)I(X = D)$$

With probability $1 - \psi$ myopic (transient property)
3 types of voters: liberals, conservatives and centrists

Centrists’ priors that parties are the high type are λ_{maj} and λ_{min}, with $\lambda_{maj} > \lambda_{min}$

Liberals/conservatives always vote same way (so analysis can ignore)

$\text{Prob(majority re-elected)} = f(\sim\lambda_{maj} - \sim\lambda_{min}), \quad f'(\cdot) > 0$

With probability $\psi \in (0.5, 1)$, majority objective fctn:

$u_{maj} = f(\sim\lambda_{maj} - \sim\lambda_{min}) + \alpha \text{Pr}(A|X = D)I(X = D)$

With prob $1 - \psi$ myopic (transient property)
3 types of voters: liberals, conservatives and centrists

Centrists’ priors that parties are the high type are λ_{maj} and λ_{min}, with $\lambda_{maj} > \lambda_{min}$

Liberals/conservatives always vote same way (so analysis can ignore)

Prob(majority re-elected) = $f(\tilde{\lambda}_{maj} - \tilde{\lambda}_{min})$, $f'(\cdot) > 0$

With probability $\psi \in (0.5, 1)$, majority objective fctn:

$u_{maj} = f(\tilde{\lambda}_{maj} - \tilde{\lambda}_{min}) + \alpha \Pr(A|X = D) I(X = D)$

With prob $1 - \psi$ myopic (transient property)

Minority objective fn: $u_{min} = -u_{maj}$
Illustration of timing:

In PBE:

\[X^* \text{ is optimal given voters beliefs and } \sigma^*(r, I) = \Pr(A|r, I); \]

\[\sigma^*(r, I) = \Pr(A|r, I) \] is optimal given voters beliefs and \(X^* \).
Illustration of timing:
Illustration of timing:

Nature selects parties' types → Majority proposes new policy →
- News report is r_D: Minority accepts
- News report is r_E: Minority accepts, Minority blocks

In PBE:

voters beliefs about strategies are correct and posteriors about party types are Bayesian;
Illustration of timing:

In PBE:
voters beliefs about strategies are correct and posteriors about party types are Bayesian;
X^* is optimal given voters beliefs and $\sigma^*(r, I) = Pr(A|r, I)$;
In PBE: voters beliefs about strategies are correct and posteriors about party types are Bayesian; X^* is optimal given voters beliefs and $\sigma^*(r, I) = Pr(A|r, I)$; $\sigma^*(r, I) = Pr(A|r, I)$ is optimal given voters beliefs and X^*
Equilibria

First look for maximal gridlock:

\[X^* = D, \quad \sigma^*(r, I) = 0 \quad \forall r, I \]

One IC for majority:

\[
\Pr(A \mid D)(\mathbb{E}(f(\sim \lambda_{maj} - \sim \lambda_{min}) \mid A, D)) + \alpha \geq \Pr(A \mid E)(\mathbb{E}(f(\sim \lambda_{maj} - \sim \lambda_{min}) \mid A, E)) + \Pr(B \mid E)(\mathbb{E}(f(\sim \lambda_{maj} - \sim \lambda_{min}) \mid B, E))
\]

Note \(\Pr(A \mid D) \geq (\lambda_{min} + \epsilon(1 - \lambda_{min})) \)

\(\Pr(min \ acts \ like \ high \ type) \)

\(\Pr(r \ E \mid D)(1 - \varphi) \geq \Pr(I = \emptyset) > 0 \) if \(\pi < 1 \)

Thus LHS of IC increasing in \(\alpha \)

Thus IC holds for large enough \(\alpha \)
First look for maximal gridlock: $X^* = D, \sigma^*(r, l) = 0 \ \forall r, l$
Equilibria

- First look for maximal gridlock: $X^* = D$, $\sigma^*(r, l) = 0 \forall r, l$

- One IC for majority:

$$
Pr(A|D)(E(f(\tilde{\lambda}_{maj} - \tilde{\lambda}_{min})|A, D) + \alpha) + Pr(B|D)E(f(\tilde{\lambda}_{maj} - \tilde{\lambda}_{min})|B, D) \geq
Pr(A|E)E(f(\tilde{\lambda}_{maj} - \tilde{\lambda}_{min})|A, E) + Pr(B|E)E(f(\tilde{\lambda}_{maj} - \tilde{\lambda}_{min})|B, E)
$$
First look for maximal gridlock: $X^* = D$, $\sigma^*(r, l) = 0 \ \forall r, l$

One IC for majority:

$$Pr(A|D)(E(f(\tilde{\lambda}_{maj} - \tilde{\lambda}_{min})|A, D) + \alpha) + Pr(B|D)E(f(\tilde{\lambda}_{maj} - \tilde{\lambda}_{min})|B, D) \geq Pr(A|E)E(f(\tilde{\lambda}_{maj} - \tilde{\lambda}_{min})|A, E) + Pr(B|E)E(f(\tilde{\lambda}_{maj} - \tilde{\lambda}_{min})|B, E)$$

Note $Pr(A|D) \geq (\lambda_{min} + \epsilon(1 - \lambda_{min})) (1 - \pi)(1 - \phi) > 0$ if $\pi < 1$

$Pr(\text{min acts like high type}) \Pr(r_E|D) \Pr(l=\emptyset)$
First look for maximal gridlock: $X^* = D$, $\sigma^*(r, I) = 0 \forall r, I$

One IC for majority:

$$\Pr(A|D)(E(f(\lambda_{maj} - \lambda_{min})|A, D) + \alpha) + Pr(B|D)E(f(\lambda_{maj} - \lambda_{min})|B, D) \geq$$

$$\Pr(A|E)E(f(\lambda_{maj} - \lambda_{min})|A, E) + Pr(B|E)E(f(\lambda_{maj} - \lambda_{min})|B, E)$$

Note $\Pr(A|D) \geq (\lambda_{min} + \epsilon(1 - \lambda_{min}))(1 - \pi)(1 - \phi) > 0$ if $\pi < 1$

Thus LHS of IC increasing in α
Equilibria

▶ First look for maximal gridlock: \(X^* = D, \sigma^*(r, l) = 0 \ \forall r, l \)

▶ One IC for majority:

\[
Pr(A|D)(E(f(\tilde{\lambda}_{maj} - \tilde{\lambda}_{min})|A, D) + \alpha) + Pr(B|D)E(f(\tilde{\lambda}_{maj} - \tilde{\lambda}_{min})|B, D) \geq \\
Pr(A|E)E(f(\tilde{\lambda}_{maj} - \tilde{\lambda}_{min})|A, E) + Pr(B|E)E(f(\tilde{\lambda}_{maj} - \tilde{\lambda}_{min})|B, E)
\]

▶ Note \(Pr(A|D) \geq \left(\frac{\lambda_{min} + \epsilon(1 - \lambda_{min})}{Pr(\text{min acts like high type})} \right) \left(1 - \pi \right) \left(1 - \phi \right) > 0 \) if \(\pi < 1 \)

▶ Thus LHS of IC increasing in \(\alpha \)

▶ Thus IC holds for large enough \(\alpha \)
Note

\[u_{\min}(A | I = E) \geq u_{\min}(A | I \neq E) \]

Thus, only 2 ICs for minority:

1. \[u_{\min}(B | I = E, r = r_D) \geq u_{\min}(A | I = E, r = r_D) \]
2. \[u_{\min}(B | I = E, r = r_E) \geq u_{\min}(A | I = E, r = r_E) \]

Suppose \(\pi = 0.5 \).

Then can be shown 1 holds iff

\[\lambda_{\text{maj}} - \lambda_{\text{min}} \leq \lambda_{\text{maj}}(A, r_D) - \lambda_{\text{min}}(A, r_D) \]

And 2 holds iff

\[\lambda_{\text{maj}} - \lambda_{\text{min}} \leq \lambda_{\text{maj}}(A, r_E) - \lambda_{\text{min}}(A, r_E) \]
Note $u_{\text{min}}(A|l = E) \geq u_{\text{min}}(A|l \neq E)$
Note $u_{min}(A|l = E) \geq u_{min}(A|l \neq E)$

Thus, only 2 ICs for minority:
Note \(u_{\min}(A|l = E) \geq u_{\min}(A|l \neq E) \)

Thus, only 2 ICs for minority:
1. \(u_{\min}(B|l = E, r = r_D) \geq u_{\min}(A|l = E, r = r_D) \);
Note \(u_{\min}(A|l = E) \geq u_{\min}(A|l \neq E) \)

Thus, only 2 ICs for minority:
1. \(u_{\min}(B|l = E, r = r_D) \geq u_{\min}(A|l = E, r = r_D) \);
2. \(u_{\min}(B|l = E, r = r_E) \geq u_{\min}(A|l = E, r = r_E) \)
Note $u_{\min}(A|l = E) \geq u_{\min}(A|l \neq E)$

Thus, only 2 ICs for minority:
1. $u_{\min}(B|l = E, r = r_D) \geq u_{\min}(A|l = E, r = r_D)$;
2. $u_{\min}(B|l = E, r = r_E) \geq u_{\min}(A|l = E, r = r_E)$

Suppose $\pi = 0.5$
Note $u_{min}(A|l = E) \geq u_{min}(A|l \neq E)$

Thus, only 2 ICs for minority:
1. $u_{min}(B|l = E, r = r_D) \geq u_{min}(A|l = E, r = r_D)$;
2. $u_{min}(B|l = E, r = r_E) \geq u_{min}(A|l = E, r = r_E)$

Suppose $\pi = 0.5$

Then can be shown 1 holds iff
$\lambda_{maj} - \lambda_{min} \leq \tilde{\lambda}_{maj}(A, r_D) - \tilde{\lambda}_{min}(A, r_D)$
Note \(u_{\text{min}}(A|I = E) \geq u_{\text{min}}(A|I \neq E) \)

Thus, only 2 ICs for minority:
1. \(u_{\text{min}}(B|I = E, r = r_D) \geq u_{\text{min}}(A|I = E, r = r_D) \);
2. \(u_{\text{min}}(B|I = E, r = r_E) \geq u_{\text{min}}(A|I = E, r = r_E) \)

Suppose \(\pi = 0.5 \)

Then can be shown 1 holds iff
\[\lambda_{\text{maj}} - \lambda_{\text{min}} \leq \tilde{\lambda}_{\text{maj}}(A, r_D) - \tilde{\lambda}_{\text{min}}(A, r_D) \]

And 2 holds iff \(\lambda_{\text{maj}} - \lambda_{\text{min}} \leq \tilde{\lambda}_{\text{maj}}(A, r_E) - \tilde{\lambda}_{\text{min}}(A, r_E) \)
IC1 holds iff
\[\epsilon \geq \lambda_{\text{maj}} \lambda_{\text{min}} (1 - \lambda_{\text{maj}})(1 - \lambda_{\text{min}}) \] (1)

Intuition: if \(\epsilon = 0 \), then
\[\sim \lambda_{\text{maj}}(A, r_{\mathcal{D}}) = \sim \lambda_{\text{min}}(A, r_{\mathcal{D}}) = 1 \]
Implies IC1 cannot hold (given \(\lambda_{\text{maj}} > \lambda_{\text{min}} \))

Larger \(\epsilon \), more likely \(Y = A \) due to fluke, relatively more so for minority

Can show IC2 holds if
\[\left(\Pr(A, r_{\mathcal{E}} | \bar{\theta}_{\text{maj}}) - \Pr(A, r_{\mathcal{E}}) \right) \lambda_{\text{maj}} \geq \left(\Pr(A, r_{\mathcal{E}} | \bar{\theta}_{\text{min}}) - \Pr(A, r_{\mathcal{E}}) \right) \lambda_{\text{min}} \] (2)

Holds strictly if \(\lambda_{\text{min}} = 0 \), \(\lambda_{\text{maj}} > 0 \), since \(\Pr(A, r_{\mathcal{E}} | \bar{\theta}_{\text{maj}}) > \Pr(A, r_{\mathcal{E}}) \)

By continuity, both ICs hold for \((\pi, \lambda_{\text{min}})\) in neighborhood of \((0.5, 0)\)
IC1 holds iff

\[\epsilon \geq \frac{\lambda_{maj} \lambda_{min}}{(1 - \lambda_{maj})(1 - \lambda_{min})} \]

(1)

Intuition: if \(\epsilon = 0 \), then

\[\sim \lambda_{maj}(A, rD) = \sim \lambda_{min}(A, rD) = 1 \]

Implies IC1 cannot hold (given \(\lambda_{maj} > \lambda_{min} \))

Larger \(\epsilon \), more likely \(Y = A \) due to fluke, relatively more so for minority

Can show IC2 holds if

\[\left(\Pr(A, rE | \bar{\theta}_{maj}) - \Pr(A, rE) \right) \lambda_{maj} \geq \left(\Pr(A, rE | \bar{\theta}_{min}) - \Pr(A, rE) \right) \lambda_{min} \]

(2)

Holds strictly if \(\lambda_{min} = 0, \lambda_{maj} > 0 \), since \(\Pr(A, rE | \bar{\theta}_{maj}) > \Pr(A, rE) \)

By continuity, both ICs hold for \((\pi, \lambda_{min})\) in neighborhood of \((0.5, 0)\)
IC1 holds iff

\[\epsilon \geq \frac{\lambda_{maj} \lambda_{min}}{(1 - \lambda_{maj})(1 - \lambda_{min})} \]

(1)

Intuition: if \(\epsilon = 0 \), then \(\tilde{\lambda}_{maj}(A, r_D) = \tilde{\lambda}_{min}(A, r_D) = 1 \)
IC1 holds iff

\[\epsilon \geq \frac{\lambda_{maj} \lambda_{min}}{(1 - \lambda_{maj})(1 - \lambda_{min})} \] (1)

Intuition: if \(\epsilon = 0 \), then \(\lambda_{maj}(A, r_D) = \lambda_{min}(A, r_D) = 1 \)

Implies IC1 cannot hold (given \(\lambda_{maj} > \lambda_{min} \))
IC1 holds iff

\[\epsilon \geq \frac{\lambda_{maj}\lambda_{min}}{(1 - \lambda_{maj})(1 - \lambda_{min})} \]

(1)

- Intuition: if \(\epsilon = 0 \), then \(\tilde{\lambda}_{maj}(A, r_D) = \tilde{\lambda}_{min}(A, r_D) = 1 \)
- Implies IC1 cannot hold (given \(\lambda_{maj} > \lambda_{min} \))
- Larger \(\epsilon \), more likely \(Y = A \) due to fluke, relatively more so for minority
IC1 holds iff

\[
\epsilon \geq \frac{\lambda_{maj}\lambda_{min}}{(1 - \lambda_{maj})(1 - \lambda_{min})}
\]

(1)

Intuition: if \(\epsilon = 0 \), then \(\tilde{\lambda}_{maj}(A, r_D) = \tilde{\lambda}_{min}(A, r_D) = 1 \)

Implies IC1 cannot hold (given \(\lambda_{maj} > \lambda_{min} \))

Larger \(\epsilon \), more likely \(Y = A \) due to fluke, relatively more so for minority

Can show IC2 holds if

\[
(Pr(A, r_E|\bar{\theta}_{maj}) - Pr(A, r_E))\lambda_{maj} \geq (Pr(A, r_E|\bar{\theta}_{min}) - Pr(A, r_E))\lambda_{min}
\]

(2)
IC1 holds iff

\[\epsilon \geq \frac{\lambda_{maj}\lambda_{min}}{(1 - \lambda_{maj})(1 - \lambda_{min})} \] (1)

Intuition: if \(\epsilon = 0 \), then \(\tilde{\lambda}_{maj}(A, r_D) = \tilde{\lambda}_{min}(A, r_D) = 1 \)

Implies IC1 cannot hold (given \(\lambda_{maj} > \lambda_{min} \))

Larger \(\epsilon \), more likely \(Y = A \) due to fluke, relatively more so for minority

Can show IC2 holds if

\[(Pr(A, r_E | \tilde{\theta}_{maj}) - Pr(A, r_E))\lambda_{maj} \geq (Pr(A, r_E | \tilde{\theta}_{min}) - Pr(A, r_E))\lambda_{min} \] (2)

Holds strictly if \(\lambda_{min} = 0, \lambda_{maj} > 0 \), since \(Pr(A, r_E | \tilde{\theta}_{maj}) > Pr(A, r_E) \)
IC1 holds iff

\[\epsilon \geq \frac{\lambda_{maj}\lambda_{min}}{(1 - \lambda_{maj})(1 - \lambda_{min})} \]

Intuition: if \(\epsilon = 0 \), then \(\tilde{\lambda}_{maj}(A, r_D) = \tilde{\lambda}_{min}(A, r_D) = 1 \)

Implies IC1 cannot hold (given \(\lambda_{maj} > \lambda_{min} \))

Larger \(\epsilon \), more likely \(Y = A \) due to fluke, relatively more so for minority

Can show IC2 holds if

\[(Pr(A, r_E|\bar{\theta}_{maj}) - Pr(A, r_E))\lambda_{maj} \geq (Pr(A, r_E|\bar{\theta}_{min}) - Pr(A, r_E))\lambda_{min} \]

Holds strictly if \(\lambda_{min} = 0, \lambda_{maj} > 0 \), since \(Pr(A, r_E|\bar{\theta}_{maj}) > Pr(A, r_E) \)

By continuity, both ICs hold for \((\pi, \lambda_{min})\) in neighborhood of \((0.5, 0)\)
Proposition

If and only if π is sufficiently small, if $\lambda_{\min}(\alpha)$ is sufficiently small (large), then there exists a "total gridlock" PBE in which a strategic majority always plays D, and a strategic minority always plays B ($\sigma^*(r, I) = 0 \forall r, I$).

Strategic majority proposes D because of chance it slips by ($\phi < 1$).

When π close to 0.5 implies voters learn only from political actions.

Small λ_{\min} implies only $\lambda_{maj, sub}$ substantially changes due to actions (and B hurts it).

Large π and $r = r_E$, then B primarily signals $\theta_{min} = \theta$ (so minority wants to play A and PBE fails to exist).
Proposition

If and only if π is sufficiently small, if $\lambda_{\min}(\alpha)$ is sufficiently small (large), then there exists a "total gridlock" PBE in which a strategic majority always plays D, and a strategic minority always plays B ($\sigma^*(r, I) = 0 \ \forall r, I$).
Proposition

If and only if π is sufficiently small, if $\lambda_{\text{min}} (\alpha)$ is sufficiently small (large), then there exists a “total gridlock” PBE in which a strategic majority always plays D, and a strategic minority always plays B $(\sigma^*(r, I) = 0 \ \forall r, I)$.

- Strategic majority proposes D because of chance it slips by $(\phi < 1)$
Proposition

If and only if π is sufficiently small, if $\lambda_{\text{min}} (\alpha)$ is sufficiently small (large), then there exists a “total gridlock” PBE in which a strategic majority always plays D, and a strategic minority always plays B ($\sigma^* (r, I) = 0 \forall r, I$).

- Strategic majority proposes D because of chance it slips by ($\phi < 1$)
- When π close to 0.5 implies voters learn only from political actions
Proposition

If and only if π is sufficiently small, if $\lambda_{\text{min}}(\alpha)$ is sufficiently small (large), then there exists a “total gridlock” PBE in which a strategic majority always plays D, and a strategic minority always plays B ($\sigma^*(r, I) = 0 \ \forall r, I$).

- Strategic majority proposes D because of chance it slips by ($\phi < 1$)
- When π close to 0.5 implies voters learn only from political actions
- Small λ_{min} implies only λ_{maj} substantially changes due to actions (and B hurts it)
Proposition

If and only if π is sufficiently small, if $\lambda_{\text{min}} (\alpha)$ is sufficiently small (large), then there exists a “total gridlock” PBE in which a strategic majority always plays D, and a strategic minority always plays B ($\sigma^*(r, I) = 0 \forall r, I$).

- Strategic majority proposes D because of chance it slips by ($\phi < 1$)
- When π close to 0.5 implies voters learn only from political actions
- Small λ_{min} implies only λ_{maj} substantially changes due to actions (and B hurts it)
- Large π and $r = r_E$, then B primarily signals $\theta_{\text{min}} = \theta$ (so minority wants to play A and PBE fails to exist)
If IC2 not satisfied, next pure strategy equilibrium to consider:

\[\sigma^* (r_E, E) = 1 \]

Requires \(\lambda_{maj} - \lambda_{min} \geq \sim \lambda_{maj} (A, r_E) - \sim \lambda_{min} (A, r_E) \)

Can show this cannot hold (given \(\phi > 0.5 \), implies \(A \) is strong signal \(I = E \))

Thus, must mix when \(r = r_E, I = E \)

Large \(\pi \) and \(r = r_E \), then \(B \) primarily signals \(\theta_{min} = \theta \)

So, again equilibrium does not exist for large \(\pi \)
If IC2 not satisfied, next pure strategy equilibrium to consider:
\[\sigma^*(r_E, E) = 1 \]
If IC2 not satisfied, next pure strategy equilibrium to consider:
\[\sigma^*(r_E, E) = 1 \]

Requires \(\lambda_{maj} - \lambda_{min} \geq \tilde{\lambda}_{maj}(A, r_E) - \tilde{\lambda}_{min}(A, r_E) \)
If IC2 not satisfied, next pure strategy equilibrium to consider:
\[\sigma^*(r_E, E) = 1 \]

Requires \(\lambda_{maj} - \lambda_{min} \geq \tilde{\lambda}_{maj}(A, r_E) - \tilde{\lambda}_{min}(A, r_E) \)

Can show this cannot hold (given \(\phi > 0.5 \), implies A is strong signal \(I = E \))
If IC2 not satisfied, next pure strategy equilibrium to consider:
\[\sigma^*(r_E, E) = 1 \]

Requires
\[\lambda_{maj} - \lambda_{min} \geq \tilde{\lambda}_{maj}(A, r_E) - \tilde{\lambda}_{min}(A, r_E) \]

Can show this cannot hold (given \(\phi > 0.5 \), implies \(A \) is strong signal \(I = E \))

Thus, must mix when \(r = r_E, I = E \)
If IC2 not satisfied, next pure strategy equilibrium to consider:
$$\sigma^*(r_E, E) = 1$$

Requires
$$\lambda_{maj} - \lambda_{min} \geq \widetilde{\lambda}_{maj}(A, r_E) - \widetilde{\lambda}_{min}(A, r_E)$$

Can show this cannot hold (given $\phi > 0.5$, implies A is strong signal $I = E$)

Thus, must mix when $r = r_E, I = E$

(still IC for $Y = B$ given $I \neq E$)
If IC2 not satisfied, next pure strategy equilibrium to consider:
\[\sigma^*(r_E, E) = 1 \]

- Requires \(\lambda_{maj} - \lambda_{min} \geq \tilde{\lambda}_{maj}(A, r_E) - \tilde{\lambda}_{min}(A, r_E) \)
- Can show this cannot hold (given \(\phi > 0.5 \), implies \(A \) is strong signal \(I = E \))
- Thus, must mix when \(r = r_E, I = E \)
- (still IC for \(Y = B \) given \(I \neq E \))
- Large \(\pi \) and \(r = r_E \), then \(B \) primarily signals \(\theta_{min} = \theta \)
If IC2 not satisfied, next pure strategy equilibrium to consider:

\[\sigma^*(r_E, E) = 1 \]

- Requires \(\lambda_{maj} - \lambda_{min} \geq \tilde{\lambda}_{maj}(A, r_E) - \tilde{\lambda}_{min}(A, r_E) \)
- Can show this cannot hold (given \(\phi > 0.5 \), implies \(A \) is strong signal \(I = E \))
- Thus, must mix when \(r = r_E, I = E \)
- (still IC for \(Y = B \) given \(I \neq E \))
- Large \(\pi \) and \(r = r_E \), then \(B \) primarily signals \(\theta_{min} = \theta \)
- So, again equilibrium does not exist for large \(\pi \)
Proposition

If and only if π is sufficiently small, if α is sufficiently large and a total gridlock PBE fails to exist, then there exists a "partial gridlock" PBE in which the strategic majority always plays D, and the minority plays $\sigma^* (r_E, E) \in (0, 1)$ and $\sigma^* (r_I, I) = 0$ otherwise. There does not exist a PBE in which $\sigma^* (r_E, E) = 1$ and $\sigma^* (r_I, I) = 0$ otherwise.
Proposition

If and only if π is sufficiently small, if α is sufficiently large and a total gridlock PBE fails to exist, then there exists a “partial gridlock” PBE in which the strategic majority always plays D, and the minority plays $\sigma^*(r_E, E) \in (0, 1)$ and $\sigma^*(r, l) = 0$ otherwise. There does not exist a PBE in which $\sigma^*(r_E, E) = 1$ and $\sigma^*(r, l) = 0$ otherwise.
Parameter regions for total, partial gridlock equilibria; $\pi = 0.55$ (x-axis = λ_{min}; y-axis = λ_{maj})
Next, look for opposite type of equilibrium

▶ Myopic majority always proposes E; suppose if non-myopic, E

▶ Showed above \(\sigma^*(r_E, E) = 1 \) for large \(\pi \) when \(X^* = D \) and different voter expectations–still true

▶ Suppose \(\sigma^*(r_E, \emptyset) = 1 \) also

▶ Then \(\sim \lambda_{maj}(r_E, B) = 0 \) (if \(\pi < 1 \), otherwise this is off-path)

▶ So in PBE, \(\sigma^*(r_E, \emptyset) < 1 \) if \(\pi < 1 \) and \(\sigma^*(r_E, \emptyset) = 1 \) if \(\pi = 1 \).

▶ Possible \(\sigma^*(r_D, E) > 0 \) but \(\sigma^*(r_D, I \neq E) = 0 \) for large \(\pi, \alpha \)

▶ Can show majority does lose reputation from \((r_D, B) \), and \(\Pr(A|D) \rightarrow 0 \) as \(\pi \rightarrow 1 \)

▶ Thus non-myopic majority does play E (reputation dominates)
Next, look for opposite type of equilibrium

- E proposed, accepted as much as possible
Next, look for opposite type of equilibrium

- E proposed, accepted as much as possible
- Myopic majority always proposes D; suppose if non-myopic, E
Next, look for opposite type of equilibrium

- E proposed, accepted as much as possible
- Myopic majority always proposes D; suppose if non-myopic, E
- Showed above $\sigma^*(r_E, E) = 1$ for large π when $X^* = D$ and different voter expectations–still true
Next, look for opposite type of equilibrium

- E proposed, accepted as much as possible
- Myopic majority always proposes D; suppose if non-myopic, E
- Showed above $\sigma^*(r_E, E) = 1$ for large π when $X^* = D$ and different voter expectations—still true
- Suppose $\sigma^*(r_E, \emptyset) = 1$ also
Next, look for opposite type of equilibrium

- E proposed, accepted as much as possible
- Myopic majority always proposes D; suppose if non-myopic, E
- Showed above $\sigma^*(r_E, E) = 1$ for large π when $X^* = D$ and different voter expectations—still true
- Suppose $\sigma^*(r_E, \emptyset) = 1$ also
- Then $\tilde{\lambda}_{maj}(r_E, B) = 0$ (if $\pi < 1$, otherwise this is off-path)
Next, look for opposite type of equilibrium

- E proposed, accepted as much as possible
- Myopic majority always proposes D; suppose if non-myopic, E
- Showed above $\sigma^*(r_E, E) = 1$ for large π when $X^* = D$ and different voter expectations—still true
- Suppose $\sigma^*(r_E, \emptyset) = 1$ also
- Then $\tilde{\lambda}_{maj}(r_E, B) = 0$ (if $\pi < 1$, otherwise this is off-path)
- So in PBE, $\sigma^*(r_E, \emptyset) < 1$ if $\pi < 1$ and $\sigma^*(r_E, \emptyset) = 1$ if $\pi = 1$.
Next, look for opposite type of equilibrium

- E proposed, accepted as much as possible
- Myopic majority always proposes D; suppose if non-myopic, E
- Showed above $\sigma^*(r_E, E) = 1$ for large π when $X^* = D$ and different voter expectations—still true
- Suppose $\sigma^*(r_E, \emptyset) = 1$ also
- Then $\tilde{\lambda}_{maj}(r_E, B) = 0$ (if $\pi < 1$, otherwise this is off-path)
- So in PBE, $\sigma^*(r_E, \emptyset) < 1$ if $\pi < 1$ and $\sigma^*(r_E, \emptyset) = 1$ if $\pi = 1$.
- Possible $\sigma^*(r_D, E) > 0$ but $\sigma^*(r_D, I \neq E) = 0$ for large π, α
Next, look for opposite type of equilibrium

- E proposed, accepted as much as possible
- Myopic majority always proposes D; suppose if non-myopic, E
- Showed above $\sigma^*(r_E, E) = 1$ for large π when $X^* = D$ and different voter expectations—still true
- Suppose $\sigma^*(r_E, \emptyset) = 1$ also
- Then $\lambda_{maj}(r_E, B) = 0$ (if $\pi < 1$, otherwise this is off-path)
- So in PBE, $\sigma^*(r_E, \emptyset) < 1$ if $\pi < 1$ and $\sigma^*(r_E, \emptyset) = 1$ if $\pi = 1$.
- Possible $\sigma^*(r_D, E) > 0$ but $\sigma^*(r_D, I \neq E) = 0$ for large π, α
- Can show majority does lose reputation from (r_D, B), and $Pr(A|D) \to 0$ as $\pi \to 1$
Next, look for opposite type of equilibrium

- E proposed, accepted as much as possible
- Myopic majority always proposes D; suppose if non-myopic, E
- Showed above $\sigma^*(r_E, E) = 1$ for large π when $X^* = D$ and different voter expectations—still true
- Suppose $\sigma^*(r_E, \emptyset) = 1$ also
- Then $\tilde{\lambda}_{maj}(r_E, B) = 0$ (if $\pi < 1$, otherwise this is off-path)
- So in PBE, $\sigma^*(r_E, \emptyset) < 1$ if $\pi < 1$ and $\sigma^*(r_E, \emptyset) = 1$ if $\pi = 1$. Possible $\sigma^*(r_D, E) > 0$ but $\sigma^*(r_D, I \neq E) = 0$ for large π, α
- Can show majority does lose reputation from (r_D, B), and $Pr(A|D) \to 0$ as $\pi \to 1$
- Thus non-myopic majority does play E (reputation dominates)
Proposition
For sufficiently large α, if and only if π is sufficiently large, then there exists a "cooperative" PBE in which the strategic majority always plays E when it is non-myopic, and the strategic minority plays $\sigma^*\left(r_E, E\right) = 1$, $\sigma^*\left(r_E, \emptyset\right) \in [0, 1]$ (only if $\pi = 1$), $\sigma^*\left(r_D, E\right) \in [0, 1]$ and $\sigma^* = 0$ otherwise. If $\pi = 1$, then $\sim \lambda_{maj}(B, r_E) > \sim \lambda_{maj}(A, r_E)$ and $\sim \lambda_{min}(B, r_E) < \lambda_{min}$.

$\psi < 1$ guarantees D sometimes played; avoids complicated mixed strategy analysis.

Summary: large π, cooperative PBE exists, no gridlock PBE; small π, gridlock PBE exists, no cooperative PBE.

Media good watchdog when accurate–forces both parties to "do the right thing"–political competition insufficient.
Proposition

For sufficiently large α, if and only if π is sufficiently large, then there exists a “cooperative” PBE in which the strategic majority always plays E when it is non-myopic, and the strategic minority plays $\sigma^*(r_E, E) = 1$, $\sigma^*(r_E, \emptyset) \in [0, 1]$ ($=1$ only if $\pi = 1$), $\sigma^*(r_D, E) \in [0, 1]$ and $\sigma^* = 0$ otherwise. If $\pi = 1$, then $\lambda_{maj}(B, r_E) > \lambda_{maj}(A, r_E)$ and $\lambda_{min}(B, r_E) < \lambda_{min}$.
Proposition

For sufficiently large α, if and only if π is sufficiently large, then there exists a “cooperative” PBE in which the strategic majority always plays E when it is non-myopic, and the strategic minority plays $\sigma^*(r_E, E) = 1$, $\sigma^*(r_E, \emptyset) \in [0, 1]$ (only if $\pi = 1$), $\sigma^*(r_D, E) \in [0, 1]$ and $\sigma^* = 0$ otherwise. If $\pi = 1$, then $\lambda_{maj}(B, r_E) > \lambda_{maj}(A, r_E)$ and $\lambda_{min}(B, r_E) < \lambda_{min}$.

ψ < 1 guarantees D sometimes played; avoids complicated mixed strategy analysis.
Proposition

For sufficiently large α, if and only if π is sufficiently large, then there exists a “cooperative” PBE in which the strategic majority always plays E when it is non-myopic, and the strategic minority plays $\sigma^*(r_E, E) = 1$, $\sigma^*(r_E, \emptyset) \in [0, 1]$ (=1 only if $\pi = 1$), $\sigma^*(r_D, E) \in [0, 1]$ and $\sigma^* = 0$ otherwise. If $\pi = 1$, then $\tilde{\lambda}_{maj}(B, r_E) > \tilde{\lambda}_{maj}(A, r_E)$ and $\tilde{\lambda}_{min}(B, r_E) < \lambda_{min}$.

$\psi < 1$ guarantees D sometimes played; avoids complicated mixed strategy analysis

Summary: large π, cooperative PBE exists, no gridlock PBE; small π, gridlock PBE exists, no cooperative PBE
Proposition

For sufficiently large α, if and only if π is sufficiently large, then there exists a “cooperative” PBE in which the strategic majority always plays E when it is non-myopic, and the strategic minority plays $\sigma^*(r_E, E) = 1$, $\sigma^*(r_E, \emptyset) \in [0, 1]$ ($=1$ only if $\pi = 1$), $\sigma^*(r_D, E) \in [0, 1]$ and $\sigma^* = 0$ otherwise. If $\pi = 1$, then $\tilde{\lambda}_{maj}(B, r_E) > \tilde{\lambda}_{maj}(A, r_E)$ and $\tilde{\lambda}_{min}(B, r_E) < \lambda_{min}$.

$\psi < 1$ guarantees D sometimes played; avoids complicated mixed strategy analysis

Summary: large π, cooperative PBE exists, no gridlock PBE; small π, gridlock PBE exists, no cooperative PBE

Media good watchdog when accurate—forces both parties to “do the right thing”—political competition insufficient
Gridlock analysis

Lemma
For any gridlock PBE with π_g and cooperative PBE with π_c,

$\pi_g \leq \pi_c$.

1. $\Pr(B|E, \text{gridlock PBE}) > \Pr(B|E, \text{cooperative PBE})$;
2. $\Pr(B|D, \text{gridlock PBE}) < \Pr(B|D, \text{cooperative PBE})$ if π_c sufficiently large.

Efficient policies more likely blocked in gridlock PBE–direct effect of lower media accuracy.
But inefficient policies more likely blocked in cooperative PBE if π large.

So, not obvious that gridlock more common in so-called gridlock PBE.
Gridlock analysis

Lemma

For any gridlock PBE with π_g and cooperative PBE with π_c, $\pi_g \leq \pi_c$,
1. $\Pr(B|E, \text{gridlock PBE}) > \Pr(B|E, \text{cooperative PBE})$;
2. $\Pr(B|D, \text{gridlock PBE}) < \Pr(B|D, \text{cooperative PBE})$ iff π_c sufficiently large
Gridlock analysis

Lemma
For any gridlock PBE with π_g and cooperative PBE with π_c, $\pi_g \leq \pi_c$,
1. $\Pr(B|E, \text{gridlock PBE}) > \Pr(B|E, \text{cooperative PBE})$;
2. $\Pr(B|D, \text{gridlock PBE}) < \Pr(B|D, \text{cooperative PBE})$ iff π_c sufficiently large

Efficient policies more likely blocked in gridlock PBE–direct effect of lower media accuracy
Gridlock analysis

Lemma

For any gridlock PBE with π_g and cooperative PBE with π_c, $\pi_g \leq \pi_c$,

1. $\Pr(B|E, \text{gridlock PBE}) > \Pr(B|E, \text{cooperative PBE})$;
2. $\Pr(B|D, \text{gridlock PBE}) < \Pr(B|D, \text{cooperative PBE})$ iff π_c sufficiently large

- Efficient policies more likely blocked in gridlock PBE–direct effect of lower media accuracy
- But inefficient policies more likely blocked in cooperative PBE if π large
Gridlock analysis

Lemma

For any gridlock PBE with π_g and cooperative PBE with π_c, $\pi_g \leq \pi_c$,

1. $Pr(B|E, \text{gridlock PBE}) > Pr(B|E, \text{cooperative PBE})$;
2. $Pr(B|D, \text{gridlock PBE}) < Pr(B|D, \text{cooperative PBE})$ iff π_c sufficiently large

- Efficient policies more likely blocked in gridlock PBE—direct effect of lower media accuracy
- But inefficient policies more likely blocked in cooperative PBE if π large
- So, not obvious that gridlock more common in so-called gridlock PBE
What about unconditional $Pr(B)$?

Proposition
For any $\pi_g \leq \pi_c$, B is more likely to be played in a gridlock equilibrium with $\pi = \pi_g$ than a cooperative equilibrium with $\pi = \pi_c$.

Formalizes gridlock more likely in gridlock PBE

Result doesn't require $Pr(D|\text{gridlockPBE}) > Pr(D|\text{cooperativePBE})$!

If D played more often, then λ_{maj} lower

Then λ_{min} lower (due to $\lambda_{\text{maj}} > \lambda_{\text{min}}$ assumption)

Then $Pr(B|E)$ higher and $dPr(B|D)/d\pi$ lower

Also $\phi > 0$. 5 mutes effect of greater π_c
What about unconditional $Pr(B)$?
What about unconditional $Pr(B)$?

Proposition

*For any $\pi_g \leq \pi_c$, B is more likely to be played in a gridlock equilibrium with $\pi = \pi_g$ than a cooperative equilibrium with $\pi = \pi_c$.***
What about unconditional $Pr(B)$?

Proposition

*For any $\pi_g \leq \pi_c$, B is more likely to be played in a gridlock equilibrium with $\pi = \pi_g$ than a cooperative equilibrium with $\pi = \pi_c$.***

- Formalizes gridlock more likely in gridlock PBE

- If D played more often, then λ_{maj} lower

- Then λ_{min} lower (due to $\lambda_{\text{maj}} > \lambda_{\text{min}}$ assumption)

- Then $Pr(B|E)$ higher and $dPr(B|D)/d\pi$ lower

- Also $\phi > 0$. 5 mutes effect of greater π_c
What about unconditional $Pr(B)$?

Proposition

For any $\pi_g \leq \pi_c$, B is more likely to be played in a gridlock equilibrium with $\pi = \pi_g$ than a cooperative equilibrium with $\pi = \pi_c$.

- Formalizes gridlock more likely in gridlock PBE
- Result doesn’t require $Pr(D|\text{gridlockPBE}) > Pr(D|\text{cooperativePBE})$!
What about unconditional $Pr(B)$?

Proposition

*For any $\pi_g \leq \pi_c$, B is more likely to be played in a gridlock equilibrium with $\pi = \pi_g$ than a cooperative equilibrium with $\pi = \pi_c$.***

- Formalizes gridlock more likely in gridlock PBE
- Result doesn’t require $Pr(D|\text{gridlockPBE}) > Pr(D|\text{cooperativePBE})!$
- If D played more often, then λ_{maj} lower
What about unconditional \(Pr(B) \)?

Proposition

For any \(\pi_g \leq \pi_c \), \(B \) is more likely to be played in a gridlock equilibrium with \(\pi = \pi_g \) than a cooperative equilibrium with \(\pi = \pi_c \).

- Formalizes gridlock more likely in gridlock PBE
- Result doesn’t require \(\Pr(D|\text{gridlockPBE}) > \Pr(D|\text{cooperativePBE}) \)
- If \(D \) played more often, then \(\lambda_{maj} \) lower
- Then \(\lambda_{min} \) lower (due to \(\lambda_{maj} > \lambda_{min} \) assumption)
What about unconditional $Pr(B)$?

Proposition

*For any $\pi_g \leq \pi_c$, B is more likely to be played in a gridlock equilibrium with $\pi = \pi_g$ than a cooperative equilibrium with $\pi = \pi_c$.***

- Formalizes gridlock more likely in gridlock PBE
- Result doesn’t require $Pr(D|\text{gridlockPBE}) > Pr(D|\text{cooperativePBE})!$
- If D played more often, then λ_{maj} lower
- Then λ_{min} lower (due to $\lambda_{maj} > \lambda_{min}$ assumption)
- Then $Pr(B|E)$ higher and $dPr(B|D)/d\pi$ lower
What about unconditional $Pr(B)$?

Proposition

*For any $\pi_g \leq \pi_c$, B is more likely to be played in a gridlock equilibrium with $\pi = \pi_g$ than a cooperative equilibrium with $\pi = \pi_c$.**

- Formalizes gridlock more likely in gridlock PBE
- Result doesn’t require $Pr(D|\text{gridlockPBE}) > Pr(D|\text{cooperativePBE})!$
- If D played more often, then λ_{maj} lower
- Then λ_{min} lower (due to $\lambda_{maj} > \lambda_{min}$ assumption)
- Then $Pr(B|E)$ higher and $dPr(B|D)/d\pi$ lower
- Also $\phi > 0.5$ mutes effect of greater π_c
The overall welfare results are not as clean
The overall welfare results are not as clean

- **Proposition**

 For any gridlock PBE with π_g and cooperative PBE with π_c, $\pi_g \leq \pi_c$, if π_c or ψ is sufficiently large, then welfare higher in cooperative PBE.
The overall welfare results are not as clean.

Proposition

For any gridlock PBE with π_g and cooperative PBE with π_c, $\pi_g \leq \pi_c$, if π_c or ψ is sufficiently large, then welfare higher in cooperative PBE.

Welfare

\[
\text{Welfare} = \underbrace{\Pr(A|E)\Pr(E)\ W(E)}_{\Pr(E \text{ passed})} - \underbrace{\Pr(A|D)\Pr(D)\ W(D)}_{\Pr(D \text{ passed})}
\]
The overall welfare results are not as clean

- **Proposition**

 For any gridlock PBE with π_g and cooperative PBE with π_c, $\pi_g \leq \pi_c$, if π_c or ψ is sufficiently large, then welfare higher in cooperative PBE.

 - Welfare = \[
 \underbrace{\Pr(A|E)\Pr(E) \ W(E)}_{\Pr(E \ passed)} - \underbrace{\Pr(A|D)\Pr(D) \ W(D)}_{\Pr(D \ passed)}
 \]

 - If $\Pr(A|E, \text{cooperative}) \geq \Pr(A|E, \text{gridlock})$ and $\Pr(A|D, \text{cooperative}) \leq \Pr(A|D, \text{gridlock})$, then welfare would be greater in cooperative PBE for all $W(E), W(D)$
The overall welfare results are not as clean

- **Proposition**

 For any gridlock PBE with π_g and cooperative PBE with π_c, $\pi_g \leq \pi_c$, if π_c or ψ is sufficiently large, then welfare higher in cooperative PBE.

- Welfare = $\underbrace{\Pr(A|E)\Pr(E)W(E)}_{\Pr(E \text{ passed})} - \underbrace{\Pr(A|D)\Pr(D)W(D)}_{\Pr(D \text{ passed})}$

- If $\Pr(A|E, \text{cooperative}) \geq \Pr(A|E, \text{gridlock})$ and $\Pr(A|D, \text{cooperative}) \leq \Pr(A|D, \text{gridlock})$, then welfare would be greater in cooperative PBE for all $W(E), W(D)$

- But by Lemma 3.4, not true
The overall welfare results are not as clean

- **Proposition**

 For any gridlock PBE with π_g and cooperative PBE with π_c, $\pi_g \leq \pi_c$, if π_c or ψ is sufficiently large, then welfare higher in cooperative PBE.

- Welfare = $Pr(A|E)Pr(E) W(E) - Pr(A|D)Pr(D) W(D)$

 - If $Pr(A|E, \text{cooperative}) \geq Pr(A|E, \text{gridlock})$ and $Pr(A|D, \text{cooperative}) \leq Pr(A|D, \text{gridlock})$, then welfare would be greater in cooperative PBE for all $W(E), W(D)$

 - But by Lemma 3.4, not true

 - But $Pr(D|\text{cooperative})$ shrunk to zero by $\psi \to 1$ and $Pr(A|D, \text{cooperative}) \to 0$ by $\pi_c \to 1$
Voter polarization

▶ Natural to think partisan voters' opinions of opposing party decline as gridlock increases

▶ If I am pro-majority partisan, and policy blocked, I think minority more likely 'bad' (blocked good policy for political gain)

▶ If I am pro-minority partisan, and policy blocked, I think majority more likely 'bad' (proposed bad policy)

▶ Partisan voters beliefs about opposition have indeed diverged over time (mostly due to declining opinion of opposition)
Voter polarization

- Natural to think partisan voters’ opinions of opposing party decline as gridlock increases
Voter polarization

- Natural to think partisan voters’ opinions of opposing party decline as gridlock increases
- If I am pro-majority partisan, and policy blocked, I think minority more likely ‘bad’ (blocked good policy for political gain)
Voter polarization

- Natural to think partisan voters’ opinions of opposing party decline as gridlock increases
- If I am pro-majority partisan, and policy blocked, I think minority more likely ‘bad’ (blocked good policy for political gain)
- If I am pro-minority partisan, and policy blocked, I think majority more likely ‘bad’ (proposed bad policy)
Voter polarization

- Natural to think partisan voters’ opinions of opposing party decline as gridlock increases
- If I am pro-majority partisan, and policy blocked, I think minority more likely ‘bad’ (blocked good policy for political gain)
- If I am pro-minority partisan, and policy blocked, I think majority more likely ‘bad’ (proposed bad policy)
- Partisan voters beliefs about opposition have indeed diverged over time (mostly due to declining opinion of opposition)
Voter polarization

- Natural to think partisan voters’ opinions of opposing party decline as gridlock increases
- If I am pro-majority partisan, and policy blocked, I think minority more likely ‘bad’ (blocked good policy for political gain)
- If I am pro-minority partisan, and policy blocked, I think majority more likely ‘bad’ (proposed bad policy)
- Partisan voters beliefs about opposition have indeed diverged over time (mostly due to declining opinion of opposition)

<table>
<thead>
<tr>
<th>Job Approval</th>
<th>Total</th>
<th>Rep</th>
<th>Dem</th>
<th>Ind</th>
<th>R-D Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obama, March 9-12, 2009</td>
<td>59</td>
<td>27</td>
<td>88</td>
<td>57</td>
<td>-61</td>
</tr>
<tr>
<td>Bush, April 18-22, 2001</td>
<td>55</td>
<td>87</td>
<td>36</td>
<td>56</td>
<td>+51</td>
</tr>
<tr>
<td>Clinton, April 1-4, 1993</td>
<td>49</td>
<td>26</td>
<td>71</td>
<td>47</td>
<td>-45</td>
</tr>
<tr>
<td>Bush, May 4-7, 1989*</td>
<td>56</td>
<td>79</td>
<td>41</td>
<td>48</td>
<td>+38</td>
</tr>
<tr>
<td>Reagan, March 13-16, 1981*</td>
<td>60</td>
<td>87</td>
<td>41</td>
<td>61</td>
<td>+46</td>
</tr>
<tr>
<td>Carter, March 25-28, 1977*</td>
<td>72</td>
<td>56</td>
<td>81</td>
<td>70</td>
<td>-25</td>
</tr>
<tr>
<td>Nixon, Mid-March, 1969*</td>
<td>65</td>
<td>84</td>
<td>55</td>
<td>65</td>
<td>+29</td>
</tr>
</tbody>
</table>

The majority is more likely to lose relative reputation ($\lambda_{maj} - \lambda_{min} < \lambda_{maj} - \lambda_{min}$) in a total gridlock PBE with π sufficiently small than a cooperative PBE with π sufficiently large.

Should be true in partial gridlock PBE too.

When the majority loses relative reputation in total gridlock PBE, the minority loses absolute reputation (if $\lambda_{maj} - \lambda_{min} < \lambda_{maj} - \lambda_{min}$, then $\lambda_{min} < \lambda_{min}$).

Less obvious.

Simple proof:

$$\Pr(r, B|\theta_{min}) > \Pr(r, B|\bar{\theta}_{min})$$
Lemma

The majority is more likely to lose relative reputation
\((\tilde{\lambda}_{maj} - \tilde{\lambda}_{min} < \lambda_{maj} - \lambda_{min}) \) in a total gridlock PBE with \(\pi \) sufficiently small than a cooperative PBE with \(\pi \) sufficiently large.

Should be true in partial gridlock PBE too

Simple proof:
\[
\Pr(r, B | \theta_{min}) = 1 > \Pr(r, B | \bar{\theta}_{min})
\]
Lemma

The majority is more likely to lose relative reputation
\((\tilde{\lambda}_{maj} - \tilde{\lambda}_{min} < \lambda_{maj} - \lambda_{min}) \) in a total gridlock PBE with \(\pi \) sufficiently small than a cooperative PBE with \(\pi \) sufficiently large.

Should be true in partial gridlock PBE too
Lemma

The majority is more likely to lose relative reputation \((\tilde{\lambda}_{maj} - \tilde{\lambda}_{min} < \lambda_{maj} - \lambda_{min})\) in a total gridlock PBE with \(\pi\) sufficiently small than a cooperative PBE with \(\pi\) sufficiently large.

- Should be true in partial gridlock PBE too

Lemma

When the majority loses relative reputation in total gridlock PBE, the minority loses absolute reputation (if \(\tilde{\lambda}_{maj} - \tilde{\lambda}_{min} < \lambda_{maj} - \lambda_{min}\), then \(\tilde{\lambda}_{min} < \lambda_{min}\)).
Lemma

The majority is more likely to lose relative reputation
\(\lambda_{maj} - \lambda_{min} < \lambda_{maj} - \lambda_{min}\) in a total gridlock PBE with \(\pi\) sufficiently small than a cooperative PBE with \(\pi\) sufficiently large.

- Should be true in partial gridlock PBE too

Lemma

When the majority loses relative reputation in total gridlock PBE, the minority loses absolute reputation (if \(\lambda_{maj} - \lambda_{min} < \lambda_{maj} - \lambda_{min}\), then \(\lambda_{min} < \lambda_{min}\)).

- Less obvious
Lemma
The majority is more likely to lose relative reputation
\((\tilde{\lambda}_{maj} - \tilde{\lambda}_{min} < \lambda_{maj} - \lambda_{min})\) in a total gridlock PBE with \(\pi\) sufficiently small than a cooperative PBE with \(\pi\) sufficiently large.

Should be true in partial gridlock PBE too

Lemma
When the majority loses relative reputation in total gridlock PBE, the minority loses absolute reputation (if \(\tilde{\lambda}_{maj} - \tilde{\lambda}_{min} < \lambda_{maj} - \lambda_{min}\), then \(\tilde{\lambda}_{min} < \lambda_{min}\)).

Less obvious

Simple proof: \(Pr(r, B|\theta_{min}) = 1 > Pr(r, B|\tilde{\theta}_{min})\)
Let $\lambda_{\text{min}} = \delta \lambda_{\text{maj}}$. Let $\delta^\ast(\lambda_{\text{maj}})$ equal the min δ such that $\sim \lambda_{\text{min}}(r_D, B) > \sim \lambda_{\text{maj}}(r_D, B)$. Then $\delta^\ast(\lambda_{\text{maj}})$ is decreasing in λ_{maj}.

▶ (conjecture)

For a given percentage reputational advantage for the majority, a reversal in reputation advantage (i.e., $\sim \lambda_{\text{min}} > \sim \lambda_{\text{maj}}$) is more likely when the majority has a worse initial reputation.
Proposition

Let $\lambda_{\text{min}} = \delta \lambda_{\text{maj}}$. Let $\delta^*(\lambda_{\text{maj}})$ equal the min δ such that
$\sim \lambda_{\text{min}}(r_D, B) > \sim \lambda_{\text{maj}}(r_D, B)$. Then $\delta^*(\lambda_{\text{maj}})$ is decreasing in λ_{maj}.
Proposition

Let \(\lambda_{\text{min}} = \delta \lambda_{\text{maj}} \). Let \(\delta^*(\lambda_{\text{maj}}) \) equal the min \(\delta \) such that
\[
\tilde{\lambda}_{\text{min}}(r_D, B) > \tilde{\lambda}_{\text{maj}}(r_D, B).
\]
Then \(\delta^*(\lambda_{\text{maj}}) \) is decreasing in \(\lambda_{\text{maj}} \).

▶ (conjecture)
Proposition

Let $\lambda_{\text{min}} = \delta \lambda_{\text{maj}}$. Let $\delta^*(\lambda_{\text{maj}})$ equal the min δ such that $\tilde{\lambda}_{\text{min}}(r_D, B) > \tilde{\lambda}_{\text{maj}}(r_D, B)$. Then $\delta^*(\lambda_{\text{maj}})$ is decreasing in λ_{maj}.

▶ (conjecture)

▶ For a given percentage reputational advantage for the majority, a reversal in reputation advantage (i.e., $\tilde{\lambda}_{\text{min}} > \tilde{\lambda}_{\text{maj}}$) is more likely when the majority has a worse initial reputation.
I analyze re-election probabilities numerically
I analyze re-election probabilities numerically

Re-election probabilities; \(\pi = 0.55 \) in gridlock PBE, \(= 0.95 \) in cooperative PBE;
\(\epsilon = 0.25, \phi = 0.75, \psi = 0.95, \alpha = 2, f(\tilde{\lambda}_{maj} - \tilde{\lambda}_{min}) = 0.5(1 + (\tilde{\lambda}_{maj} - \tilde{\lambda}_{min})^{0.3}) \) if \(\tilde{\lambda}_{maj} \geq \tilde{\lambda}_{min} \), and \(= 0.5(1 - (\tilde{\lambda}_{min} - \tilde{\lambda}_{maj})^{0.3}) \) otherwise.
Empirical implications

1. Greater probability of the majority losing reputation (Lem 3.7, Prop 3.9)
2. Greater probability of political turnover
3. No increase in minority’s approval even before turnover (Lem 3.8)
4. Exacerbation of both trends over time (Prop 3.1, Prop 3.10)
Empirical implications

- In less accurate media environments there should be:
 1. Greater probability of the majority losing reputation (Lem 3.7, Prop 3.9)
 2. Greater probability of political turnover
 3. No increase in minority’s approval even before turnover (Lem 3.8)
 4. Exacerbation of both trends over time (Prop 3.1, Prop 3.10)
Empirical implications

In less accurate media environments there should be:
1. Greater probability of the majority losing reputation (Lem 3.7, Prop 3.9)
2. Greater probability of political turnover
3. No increase in minority’s approval even before turnover (Lem 3.8)
4. Exacerbation of both trends over time (Prop 3.1, Prop 3.10)
Empirical implications

- In less accurate media environments there should be:
 1. Greater probability of the majority losing reputation (Lem 3.7, Prop 3.9)
 2. Greater probability of political turnover
Empirical implications

- In less accurate media environments there should be:
 1. Greater probability of the majority losing reputation (Lem 3.7, Prop 3.9)
 2. Greater probability of political turnover
 3. No increase in minority’s approval even before turnover (Lem 3.8)
Empirical implications

- In less accurate media environments there should be:
 1. Greater probability of the majority losing reputation (Lem 3.7, Prop 3.9)
 2. Greater probability of political turnover
 3. No increase in minority’s approval even before turnover (Lem 3.8)
 4. Exacerbation of both trends over time (Prop 3.1, Prop 3.10)
Empirical trends

1. Congress approval ratings at historical lows (13%, Gallup)
3. 40% approval of Dems in 2005, 38% in 2006; 31% approval of Repubs in 2009, 32% in 2010 (Gallup, pollingreport.com)
4. Turnover rate, filibuster use up over time
Empirical trends

1. Congress approval ratings at historical lows (13%, Gallup)
Empirical trends

1. Congress approval ratings at historical lows (13%, Gallup)
Empirical trends

1. Congress approval ratings at historical lows (13%, Gallup)
3. 40% approval of Dems in 2005, 38% in 2006; 31% approval of Repubs in 2009, 32% in 2010 (Gallup, pollingreport.com)
Empirical trends

1. Congress approval ratings at historical lows (13%, Gallup)
3. 40% approval of Dems in 2005, 38% in 2006; 31% approval of Repubs in 2009, 32% in 2010 (Gallup, pollingreport.com)
4. Turnover rate, filibuster use up over time
Empirical trends

1. Congress approval ratings at historical lows (13%, Gallup)
3. 40% approval of Dems in 2005, 38% in 2006; 31% approval of Repubs in 2009, 32% in 2010 (Gallup, pollingreport.com)
4. Turnover rate, filibuster use up over time
Discussion

Model shows political incentives to obstruct policy are strong in absence of informative media

Snowball effect due to incentives being stronger for minority with poor reputation; obstructionism further worsens reputation

Welfare losses

Model highly stylized; ignores, e.g.,

- Turnout
- Observable policy success
- Platforms
- Limited strategic thinking of public

Alternative explanation of trends: declining norms for cooperation/honesty? but maybe media is deeper cause?

Policy implications?
Discussion

- Model shows political incentives to obstruct policy are strong in absence of informative media

- Snowball effect due to incentives being stronger for minority with poor reputation; obstructionism further worsens reputation

- Welfare losses

- Model highly stylized; ignores, e.g.,
 - Turnout
 - Observable policy success
 - Platforms
 - Limited strategic thinking of public

- Alternative explanation of trends: declining norms for cooperation/honesty? but maybe media is deeper cause?

- Policy implications?
Discussion

- Model shows political incentives to obstruct policy are strong in absence of informative media
- Snowball effect due to incentives being stronger for minority w poor reputation; obstructionism further worsens reputation

- Welfare losses
- Model highly stylized; ignores, e.g.,
 - Turnout
 - Observable policy success
 - Platforms
 - Limited strategic thinking of public
- Alternative explanation of trends: declining norms for cooperation/honesty? but maybe media is deeper cause?

Policy implications?
Discussion

- Model shows political incentives to obstruct policy are strong in absence of informative media
- Snowball effect due to incentives being stronger for minority w poor reputation; obstructionism further worsens reputation
- Welfare losses
Model shows political incentives to obstruct policy are strong in absence of informative media

Snowball effect due to incentives being stronger for minority w poor reputation; obstructionism further worsens reputation

Welfare losses

Model highly stylized; ignores, e.g.,
Discussion

- Model shows political incentives to obstruct policy are strong in absence of informative media
- Snowball effect due to incentives being stronger for minority w poor reputation; obstructionism further worsens reputation
- Welfare losses
- Model highly stylized; ignores, e.g.,
 - Turnout
Discussion

- Model shows political incentives to obstruct policy are strong in absence of informative media
- Snowball effect due to incentives being stronger for minority w poor reputation; obstructionism further worsens reputation
- Welfare losses
- Model highly stylized; ignores, e.g.,
 - Turnout
 - Observable policy success
Discussion

- Model shows political incentives to obstruct policy are strong in absence of informative media
- Snowball effect due to incentives being stronger for minority w poor reputation; obstructionism further worsens reputation
- Welfare losses
- Model highly stylized; ignores, e.g.,
 - Turnout
 - Observable policy success
 - Platforms

Alternative explanation of trends: declining norms for cooperation/honesty? but maybe media is deeper cause?

Policy implications?
Discussion

- Model shows political incentives to obstruct policy are strong in absence of informative media
- Snowball effect due to incentives being stronger for minority w/ poor reputation; obstructionism further worsens reputation
- Welfare losses
- Model highly stylized; ignores, e.g.,
 - Turnout
 - Observable policy success
 - Platforms
 - Limited strategic thinking of public

Alternative explanation of trends: declining norms for cooperation/honesty? but maybe media is deeper cause?

Policy implications?
Discussion

- Model shows political incentives to obstruct policy are strong in absence of informative media.
- Snowball effect due to incentives being stronger for minority with poor reputation; obstructionism further worsens reputation.
- Welfare losses.
- Model highly stylized; ignores, e.g.,
 - Turnout
 - Observable policy success
 - Platforms
 - Limited strategic thinking of public.
- Alternative explanation of trends: declining norms for cooperation/honesty? But maybe media is deeper cause?
Discussion

- Model shows political incentives to obstruct policy are strong in absence of informative media.
- Snowball effect due to incentives being stronger for minority w poor reputation; obstructionism further worsens reputation.
- Welfare losses.
- Model highly stylized; ignores, e.g.,
 - Turnout
 - Observable policy success
 - Platforms
 - Limited strategic thinking of public
- Alternative explanation of trends: declining norms for cooperation/honesty? but maybe media is deeper cause?
- Policy implications?