
2. Dynamic Versions of R-trees

The survey by Gaede and Guenther [69] annotates a vast list of citations re-
lated to multi-dimensional access methods and, in particular, refers to R-trees
to a significant extent. In this chapter, we are further focusing on the family
of R-trees by enlightening the similarities and differences, advantages and dis-
advantages of the variations in a more exhaustive manner. As the number of
variants that have appeared in the literature is large, we group them according
to the special characteristics of the assumed environment or application, and
we examine the members of each group.

In this chapter, we present dynamic versions of the R-tree, where the ob-
jects are inserted on a one-by-one basis, as opposed to the case where a special
packing technique can be applied to insert an a priori known static set of ob-
jects into the structure by optimizing the storage overhead and the retrieval
performance. The latter case will be examined in the next chapter. In simple
words, here we focus on the way dynamic insertions and splits are performed
in assorted R-tree variants.

2.1 The R+-tree

The original R-tree has two important disadvantages that motivated the study
of more efficient variations:

1. The execution of a point location query in an R-tree may lead to the inves-
tigation of several paths from the root to the leaf level. This characteristic
may lead to performance deterioration, specifically when the overlap of
the MBRs is significant.

2. A few large rectangles may increase the degree of overlap significantly,
leading to performance degradation during range query execution, due to
empty space.

R+-trees were proposed as a structure that avoids visiting multiple paths
during point location queries, and thus the retrieval performance could be
improved [211, 220]. Moreover, MBR overlapping of internal modes is avoided.
This is achieved by using the clipping technique. In simple words, R+-trees do
not allow overlapping of MBRs at the same tree level. In turn, to achieve this,
inserted objects have to be divided in two or more MBRs, which means that a

15

16 2. Dynamic Versions of R-trees

specific object’s entries may be duplicated and redundantly stored in several
nodes.

Figure 2.1 demonstrates an R+-tree example. Although the structure looks
similar to that of the R-tree, notice that object d is stored in two leaf nodes
B and C. Also, notice that due to clipping no overlap exists between nodes at
the same level.

Fig. 2.1. An R+-tree example.

The algorithm for range query processing is similar to the one used for
R-trees. The only difference is that duplicate elimination is necessary to avoid
reporting an object more than once. However, insertion, deletion, and node
splitting algorithms are different due to the clipping technique applied. In
order to insert a new entry E, the insertion algorithm starts from the root and
determines the MBRs that intersect E.mbr. Then E.mbr is clipped and the
procedure is recursively applied for the corresponding subtrees. The insertion
algorithm is given in Figure 2.2.

The fact that multiple copies of an object’s MBR may be stored in several
leaf nodes has a direct impact on the deletion algorithm. All copies of an ob-
ject’s MBR must be removed from the corresponding leaf nodes. The deletion
algorithm is illustrated in Figure 2.3.

Evidently, an increased number of deletions may reduce storage utilization
significantly. Therefore, appropriate reorganization must be performed to han-
dle underutilized tree nodes. The CondenseTree algorithm, already illustrated
in Figure 1.8 can be used for this purpose.

2.1 The R+-tree 17

Algorithm Insert(TypeEntry E, TypeNode RN)
/* Inserts a new entry E in the R+-tree rooted at node RN */

1. if RN is not a leaf node
2. foreach entry e of RN
3. if e.mbr overlaps with E.mbr
4. Call Insert(E, e.ptr)
5. endif
6. endfor
7. else // RN is a leaf node
8. if there is available space in RN
9. Add E to RN
10. else
11. Call SplitNode(RN)
12. Perform appropriate tree reorganization to reflect changes
13. endif
14. endif

Fig. 2.2. The R+-tree insertion algorithm.

Algorithm Delete(TypeEntry E, TypeNode RN)
/* Deletes an existing entry E from the R+-tree rooted at node RN */

1. if RN is not a leaf node
2. foreach entry e of RN
3. if e.mbr overlaps with E.mbr
4. Call Delete (E,e.ptr)
5. Calculate the new MBR of the node
6. Adjust the MBR of the parent node accordingly
7. endif
8. endfor
9. else // RN is a leaf node
10. Remove E from RN .
11. Adjust the MBR of the parent node accordingly
12. endif

Fig. 2.3. The R+-tree deletion algorithm.

During the execution of the insertion algorithm a node may become full,
and therefore no more entries can be stored in it. To handle this situation, a
node splitting mechanism is required as in the R-tree case. The main difference
between the R+-tree splitting algorithm and that of the R-tree is that down-
ward propagation may be necessary, in addition to the upward propagation.
Recall that in the R-tree case, upward propagation is sufficient to guarantee
the structure’s integrity.

Therefore, this redundancy works in the opposite direction of decreasing
the retrieval performance in case of window queries. At the same time, another
side effect of clipping is that during insertions, an MBR augmentation may lead

18 2. Dynamic Versions of R-trees

to a series of update operations in a chain reaction type. Also, under certain
circumstances, the structure may lead to a deadlock, as, for example, when a
split has to take place at a node with M+1 rectangles, where every rectangle
encloses a smaller one.

2.2 The R*-tree

R∗-trees [19] were proposed in 1990 but are still very well received and widely
accepted in the literature as a prevailing performance-wise structure that is
often used as a basis for performance comparisons. As already discussed, the
R-tree is based solely on the area minimization of each MBR. On the other
hand, the R∗-tree goes beyond this criterion and examines several others, which
intuitively are expected to improve the performance during query processing.
The criteria considered by the R∗-tree are the following:

Minimization of the area covered by each MBR. This criterion aims
at minimizing the dead space (area covered by MBRs but not by the
enclosed rectangles), to reduce the number of paths pursued during query
processing. This is the single criterion that is also examined by the R-tree.

Minimization of overlap between MBRs. Since the larger the overlap-
ping, the larger is the expected number of paths followed for a query, this
criterion has the same objective as the previous one.

Minimization of MBR margins (perimeters). This criterion aims at
shaping more quadratic rectangles, to improve the performance of queries
that have a large quadratic shape. Moreover, since quadratic objects are
packed more easily, the corresponding MBRs at upper levels are expected
to be smaller (i.e., area minimization is achieved indirectly).

Maximization of storage utilization. When utilization is low, more nodes
tend to be invoked during query processing. This holds especially for larger
queries, where a significant portion of the entries satisfies the query. More-
over, the tree height increases with decreasing node utilization.

The R∗-tree follows an engineering approach to find the best possible com-
binations of the aforementioned criteria. This approach is necessary, because
the criteria can become contradictory. For instance, to keep both the area
and overlap low, the lower allowed number of entries within a node can be
reduced. Therefore, storage utilization may be impacted. Also, by minimizing
the margins so as to have more quadratic shapes, the node overlapping may
be increased.

For the insertion of a new entry, we have to decide which branch to follow, at
each level of the tree. This algorithm is called ChooseSubtree. For instance, we
consider the R∗-tree depicted in Figure 2.4. If we want to insert data rectangle
r, ChooseSubtree commences from the root level, where it chooses the entry
whose MBR needs the least area enlargement to cover r. The required node
is N5 (for which no enlargement is needed at all). Notice that the examined
criterion is area minimization. For the leaf nodes, ChooseSubtree considers

2.2 The R*-tree 19

the overlapping minimization criterion, because experimental results in [19]
indicate that this criterion performs slightly better than others. Therefore,
for the subtree rooted at N5, ChooseSubtree selects the entry whose MBR
enlargement leads to the smallest overlap increase among the sibling entries in
the node, that is, node N1.

a

k

b

c

d

e

N1

N2

f

gN3

i

j

h

N4

N5

N6

N5 N6

N1 N2 N3 N4

a b c d e f g h i j

Fig. 2.4. An R∗-tree example.

In case ChooseSubtree selects a leaf that cannot accommodate the new
entry (i.e., it already has the maximum number of entries), the R∗-tree does
not immediately resort to node splitting. Instead, it finds a fraction of the
entries from the overflowed node and reinserts them. The set of entries to be
reinserted are those whose centroid distances from node centroid are among
the largest 30% (i.e., this is a heuristic to detect and discard the furthest
entries). In the example of Figure 2.4, assume that N1 is overflowed. In this
case, entry b is selected for reinsertion, as its centroid is the farthest from the
centroid of N1.

The reinsertion algorithm achieves a kind of tree rebalancing and signifi-
cantly improves performance during query processing. However, reinsertion is
a costly operation. Therefore, only one application of reinsertion is permitted
for each level of the tree. When overflow cannot be handled by reinsertion,
node splitting is performed; the Split algorithm consists of two steps. The first
step decides a split axis among all dimensions. The split axis is the one with
the smallest overall perimeter; it works by sorting all the entries by the coor-
dinates of their left boundaries. Then it considers every division of the sorted
list that ensures that each node is at least 40% full. Assume that we have to
split the node depicted in Figure 2.5 (we assume that a node can have a single
entry, which corresponds to 33% utilization). The 1-3 division (Figure 2.5a),
allocates the first entry into N and the other 3 entries into N ′. The algorithm
computes the perimeters of N and N ′ and performs the same computation for
the other (2-2, 3-1) divisions. A second pass repeats this process with respect
to the MBRs’ right boundaries. Finally, the overall perimeter on the x-axis
equals the sum of all the perimeters obtained from the two passes.

20 2. Dynamic Versions of R-trees

b

k

c
a

N
N’

b

k

c
a

N
N’

b

k

c
a

N

N’

1-3 division

(a)

2-2 division

(b)

3-1 division

(c)

Fig. 2.5. An example of examined divisions, when split axis is x.

When the split axis is selected, the split algorithm sorts the entries (ac-
cording to their lower or upper boundaries) on the selected dimension, and
again, examines all possible divisions. The final division is the one that has
the minimum overlap between the MBRs of the resulting nodes. Continuing
the previous example, assume that the split axis is x. Then, among the pos-
sible divisions 2-2 incurs zero overlap (between N and N ′) and thus becomes
the final splitting. The cost of the split algorithm of the R∗-tree is computed
as follows. Let M and m be the maximum and minimum allowed number of
entries, respectively. The entries are sorted twice, with cost O(M log M). For
each axis, the margin of 2 × 2 × (M − 2m + 2) rectangles and the overlap of
2× (M − 2m + 2) divisions is calculated.

Finally, we notice that the R∗-tree does not use any specialized deletion
algorithm. Instead, deletion in the R∗-tree is performed with the deletion al-
gorithm of the original R-tree.

2.3 The Hilbert R-tree

The Hilbert R-tree [105] is a hybrid structure based on the R-tree and the
B+-tree. Actually, it is a B+-tree with geometrical objects being characterized
by the Hilbert value of their centroid. The structure is based on the Hilbert
space-filling curve . It has been shown in [97, 152] that the Hilbert space-filling
curve preserves well the proximity of spatial objects. Figure 2.6 illustrates three
space-filling curves.

Entries of internal tree nodes are augmented by the largest Hilbert value
of their descendants. Therefore, an entry e of an internal node is a triplet
(mbr,H, p) where mbr is the MBR that encloses all the objects in the corre-
sponding subtree, H is the maximum Hilbert value of the subtree, and p is
the pointer to the next level. Entries in leaf nodes are exactly the same as in
R-trees, R+-trees, and R∗-trees and are of the form (mbr, oid), where mbr is
the MBR of the object and oid the corresponding object identifier.

The algorithm for range query processing is the same as that of the R-tree
and the R∗-tree. Staring from the root, it descents the tree by checking if the

2.3 The Hilbert R-tree 21

Fig. 2.6. Three space-filling curves.

query rectangle intersects with the MBRs of the accessed nodes. When a leaf
is reached, all relevant objects are reported. However, insertion in a Hilbert
R-tree differs significantly from that of other variants. In order to insert a new
entry E, the Hilbert value H of its rectangle centroid is calculated. Then, H
is used as a key that guides the insertion process. At each node, the Hilbert
values of the alternative subtrees are checked and the smallest one that is
larger than H is selected. The details of the insertion algorithm are given in
Figure 2.7.

Algorithm Insert(TypeEntry E, TypeNode RN)
/* Inserts a new entry E in the Hilbert R-tree rooted at node RN */

1. if RN is not a leaf node
2. Among the entries of the node select the entry e

that has the smallest H value and is larger than the Hilbert value
of the new object

3. Call Insert(E, e.ptr)
4. Adjust MBR of parent
5. else // RN is a leaf node
6. if there is available space in RN
7. Add E to RN in a position respecting the Hilbert order
8. else
9. Call HandleOverflow(E,RN)
10. Propagate changes upwards
11. endif
12. endif

Fig. 2.7. The Hilbert R-tree insertion algorithm.

An important characteristic of the Hilbert R-tree that is missing from other
variants is that there exists an order of the nodes at each tree level, respecting
the Hilbert order of the MBRs. This order allows defining siblings for each
tree node, as in the case of the B+-tree. The existence of siblings enables the

22 2. Dynamic Versions of R-trees

delay of a node split when this node overflows. Instead of splitting a node
immediately after its capacity has been exceeded, we try to store some entries
in sibling nodes. A split takes place only if all siblings are also full. This
unique property of the Hilbert R-tree helps considerably in storage utilization
increase, and avoids unnecessary split operations. The decision to perform a
split is controlled by the HandleOverflow algorithm, which is illustrated in
Figure 2.8. In the case of a split, a new node is returned by the algorithm.

Algorithm HandleOverflow(TypeEntry E, TypeNode RN)
/* Takes care of the overflowing node RN upon insertion of E.
Returns a new node NN in the case of a split, and NULL otherwise */

1. Let E denote the set of entries of node RN and its s-1 sibling nodes
2. Set E = E ∪ E
3. if there exists a node among the s-1 siblings that is not full
4. Distribute all entries in E among the s nodes

respecting the Hilbert ordering
5. Return NULL
6. else // all s-1 siblings are full
7. Create a new node NN
8. Distribute all entries in E among the s+1 nodes
9. Return the new node NN
10. endif

Fig. 2.8. The Hilbert R-tree overflow handling algorithm.

A split takes place only if all s siblings are full, and thus s+1 nodes are
produced. This heuristic is similar to that applied in B∗-trees, where redistri-
bution and 2-to-3 splits are performed during node overflows [111].

It is evident that the Hilbert R-tree acts like a B+-tree for insertions and
like an R-tree for queries. According to the authors’ experimentation in [105],
Hilbert R-trees were proven to be the best dynamic version of R-trees as of
the time of publication. However, this variant is vulnerable performance-wise
to large objects. Moreover, by increasing the space dimensionality, proximity
is not preserved adequately by the Hilbert curve, leading to increased overlap
of MBRs in internal tree nodes.

2.4 Linear Node Splitting

Ang and Tan in [11] have proposed a linear algorithm to distribute the objects
of an overflowing node in two sets. The primary criterion of this algorithm is to
distribute the objects between the two nodes as evenly as possible, whereas the
second criterion is the minimization of the overlapping between them. Finally,
the third criterion is the minimization of the total coverage.

2.4 Linear Node Splitting 23

In order to minimize overlapping, all rectangles within an overflowed node
are tried to be pushed as far apart as possible to the boundary of the overflowed
node’s MBR. Let each rectangle be denoted as (xl, yl, xh, yh), whereas the
MBR of an overflowed node N is denoted RN = (L,B, R, T). The algorithm
in [11] uses four lists, denoted LISTL, LISTB, LISTR, LISTT , which store the
rectangles of N that are nearer to the corresponding border than to its opposite
(borders are considered in pairs: left-right, bottom-top). The algorithm is given
in Figure 2.9.

Algorithm NewLinear(TypeNode N)

1. Set LISTL ← LISTR ← LISTB ← LISTT ← ∅
2. foreach rectangle S = (xl, yl, xh, yh) in N with RN = (L, B, R, T)
3. if xl − L < R− xh
4. LISTL ← LISTL ∪ S
5. else
6. LISTR ← LISTR ∪ S
7. endif
8. if xy −B < T − yh
9. LISTB ← LISTB ∪ S
10. else
11. LISTT ← LISTT ∪ S
12. endif
13. endfor
14. if max(|LISTL|, |LISTR|) < max(|LISTB |, |LISTT |)
15. Split the node along the x direction
16. else if max(|LISTL|, |LISTR|) > max(|LISTB |, |LISTT |)
17. Split the node along the y direction
18. else //tie break
19. if overlap(LISTL, LISTR) < overlap(LISTB , LISTT)
20. Split the node along the x direction
21. else if overlap(LISTL, LISTR) > overlap(LISTB , LISTT)
22. Split the node along the y direction
23. else
24. Split the node along the direction with smallest total coverage
25. endif
26. endif

Fig. 2.9. The Linear Node Split algorithm.

It is easy to notice that each rectangle in N will participate either in LISTL

or LISTR. The same applies for LISTB or LISTT . The decision to carry the
split along the horizontal or vertical axis depends on the distribution of the
rectangles (the corresponding lines in the code are the ones that compare the
maxima among sizes of the lists). In case of a tie, the algorithm resorts to the
minimum overlapping criterion.

24 2. Dynamic Versions of R-trees

As mentioned in [11], the algorithm may have a disadvantage in the case
that most rectangles in node N (the one to be split) form a cluster, whereas a
few others are outliers. This is because then the sizes of the lists will be highly
skewed. As a solution, Ang and Tan proposed reinsertion of outliers.

Experiments using this algorithm have shown that it results in R-trees with
better characteristics and better performance for window queries in comparison
with the quadratic algorithm of the original R-tree.

2.5 Optimal Node Splitting

As has been described in Section 2.1, three node splitting algorithms were
proposed by Guttman to handle a node overflow. The three algorithms have
linear, quadratic, and exponential complexity, respectively. Among them, the
exponential algorithm achieves the optimal bipartitioning of the rectangles, at
the expense of increased splitting cost. On the other hand, the linear algorithm
is more time efficient but fails to determine an optimal rectangle bipartition.
Therefore, the best compromise between efficiency and bipartition optimality
is the quadratic algorithm.

Garcia, Lopez, and Leutenegger elaborated the optimal exponential algo-
rithm of Guttman and reached a new optimal polynomial algorithm O(nd),
where d is the space dimensionality and n = M +1 is the number of entries of
the node that overflows [71]. For n rectangles the number of possible biparti-
tions is exponential in n. Each bipartition is characterized by a pair of MBRs,
one for each set of rectangles in each partition. The key issue, however, is that
a large number of candidate bipartitions share the same pair of MBRs. This
happens when we exchange rectangles that do not participate in the formula-
tion of the MBRs. The authors show that if the cost function used depends
only on the characteristics of the MBRs, then the number of different MBR
pairs is polynomial. Therefore, the number of different bipartitions that must
be evaluated to minimize the cost function can be determined in polynomial
time.

The proposed optimal node splitting algorithm investigates each of the
O(n2) pairs of MBRs and selects the one that minimizes the cost function.
Then each one of the rectangles is assigned to the MBR that it is enclosed by.
Rectangles that lie at the intersection of the two MBRs are assigned to one of
them according to a selected criterion.

In the same paper, the authors give another insertion heuristic, which is
called sibling-shift. In particular, the objects of an overflowing node are op-
timally separated in two sets. Then one set is stored in the specific node,
whereas the other set is inserted in a sibling node that will depict the mini-
mum increase of an objective function (e.g., expected number of disk accesses).
If the latter node can accommodate the specific set, then the algorithm ter-
minates. Otherwise, in a recursive manner the latter node is split. Finally, the
process terminates when either a sibling absorbs the insertion or this is not
possible, in which case a new node is created to store the pending set. The

2.6 Branch Grafting 25

authors reported that the combined use of the optimal partitioning algorithm
and the sibling-shift policy improved the index quality (i.e., node utilization)
and the retrieval performance in comparison to the Hilbert R-trees, at the
cost of increased insertion time. This has been demonstrated by an extensive
experimental evaluation with real-life datasets.

2.6 Branch Grafting

More recently, in [208] an insertion heuristic was proposed to improve the
shape of the R-tree so that the tree achieves a more elegant shape, with a
smaller number of nodes and better storage utilization. In particular, this
technique considers how to redistribute data among neighboring nodes, so as
to reduce the total number of created nodes. The approach of branch grafting
is motivated by the following observation. If, in the case of node overflow,
we examined all other nodes to see if there is another node (at the same
level) able to accommodate one of the overflowed node’s rectangles, the split
could be prevented. Evidently, in this case, a split is performed only when
all nodes are completely full. Since the aforementioned procedure is clearly
prohibitive as it would dramatically increase the insertion cost, the branch
grafting method focuses only on the neighboring nodes to redistribute an entry
from the overflowed node. Actually, the term grafting refers to the operation
of moving a leaf or internal node (along with the corresponding subtree) from
one part of the tree to another.

The objectives of branch grafting are to achieve better-shaped R-trees and
to reduce the total number of nodes. Both these factors can improve perfor-
mance during query processing. To illustrate these issues, the following ex-
ample is given in [208]. Assume that we are inserting eight rectangles (with
the order given by their numbering), which are depicted in Figure 2.10. Let
the maximum (minimum) number of entries within a node be equal to 4 (2).
Therefore, the required result is shown in Figure 2.10(a), because they clearly
form two separate groups. However, by using theR-tree insertion algorithm,
which invokes splitting after each overflow, the result in Figure 2.10(b) would
be produced.

Using the branch and grafting method, the split after the insertion of rect-
angle H can be avoided. Figure 2.11(a) illustrates the resulted R-tree after the
insertion of the first seven rectangles (i.e., A to G). When rectangle H has to
be inserted, the branch grafting method finds out that rectangle 3 is covered
by node R1, which has room for one extra rectangle. Therefore, rectangle C
is moved from node R2 to node R1, and rectangle H can be inserted in R2

without causing an overflow. The resulted R-tree is depicted in Figure 2.11(b).
In summary, in case of node overflow, the branch grafting algorithm first

examines the parent node, to find the MBRs that overlap the MBR of the
overflowed node. Next, individual records in the overflowed are examined to
see if they can be moved to the nodes corresponding to the previously found
overlapping MBRs. Records are moved only if the resulting area of coverage for

26 2. Dynamic Versions of R-trees

A D

B C

E H

F G

(a)

A D

B

H

F G

(b)

C

E

Fig. 2.10. Branch grafting technique: (a) Optimal result after inserting 8 rectangles;
(b) actual result produced after two R-tree splits.

A D

B C

E

F G

R1 R2

A B D C E F G

A D

B C

E H

F G

(b)

R1

R2

R1

R2

R1 R2

A B D C H E F G

(a)

Fig. 2.11. (a) Resulted R-tree after the first 7 insertions (rectangles A to G); (b)
result of branch grafting after inserting the rectangle H.

2.7 Compact R-trees 27

the involved nodes does not have to be increased after the moving of records.
In the case that no movement is possible, a normal node split takes place.

In general, the approach of branch grafting has some similarities with the
forced reinsertion, which is followed by the R∗-tree. Nevertheless, as mentioned
in [208], branch grafting is not expected to outperform forced reinsertion during
query performance. However, one may expect that, because branch grafting
tries to locally handle the overflow, the overhead to the insertion time will
be smaller than that of forced reinsertion. In [208], however, the comparison
considers only various storage utilization parameters, not query processing
performance.

2.7 Compact R-trees

Huang et al. proposed Compact R-trees, a dynamic R-tree version with optimal
space overhead [93]. The motivation behind the proposed approach is that R-
trees, R+-trees, and R∗-trees suffer from the storage utilization problem, which
is around 70% in the average case. Therefore, the authors improve the insertion
mechanism of R-trees to a more compact R-tree structure, with no penalty on
performance during queries.

The heuristics applied are simple, meaning that no complex operations are
required to significantly improve storage utilization. Among the M+1 entries of
an overflowing node during insertions, a set of M entries is selected to remain
in this node, under the constraint that the resulting MBR is the minimum
possible. Then the remaining entry is inserted to a sibling that:

– has available space, and
– whose MBR is enlarged as little as possible.

Thus, a split takes place only if there is no available space in any of the sibling
nodes.

Performance evaluation results reported in [93] have shown that the storage
utilization of the new heuristic is between 97% and 99%, which is a great
improvement. A direct impact of the storage utilization improvement is the
fact that fewer tree nodes are required to index a given dataset. Moreover,
less time is required to build the tree by individual insertions, because of
the reduced number of split operations required. Finally, caching is improved
because the buffer associated with the tree requires less space to accommodate
tree nodes. It has been observed that the query performance of window queries
is similar to that of Guttman’s R-tree.

2.8 cR-trees

Motivated by the analogy between separating of R-tree node entries during
the split procedure on the one hand and clustering of spatial objects on the

28 2. Dynamic Versions of R-trees

other hand, Brakatsoulas et al. [32] have altered the assumption that an R-tree
overflowing node has to necessarily be split in exactly two nodes. In particu-
lar, using the k-means clustering algorithm as a working example, they imple-
mented a novel splitting procedure that results in up to k nodes (k ≥ 2 being
a parameter).

In fact, R-trees and their variations (R∗-trees, etc.) have used heuristic
techniques to provide an efficient splitting of M+1 entries of a node that
overflows into two groups (minimization of area enlargement, minimization of
overlap enlargement, combinations, etc.). On the other hand, Brakatsoulas et
al. observed that node splitting is an optimization problem that takes a local
decision according to the objective that the probability of simultaneous access
to the resulting nodes after split is minimized during a query operation. In-
deed, clustering maximizes the similarity of spatial objects within each cluster
(intracluster similarity) and minimizes the similarity of spatial objects across
clusters (intercluster similarity). The probability of accessing two node rect-
angles during a selection operation (hence, the probability of traversing two
subtrees) is proportional to their similarity. Therefore, node splitting should
(a) assign objects with high probability of simultaneous access to the same
node and (b) assign objects with low probability of simultaneous access to dif-
ferent nodes. Taking this into account, the authors considered the R-tree node
splitting procedure as a typical clustering problem of finding the “optimal” k
clusters of n = M + 1 entries (k ≥ 2).

The well-known k-means clustering algorithm was chosen to demonstrate
the efficiency of the cR-tree. According to the authors of the paper, the choice
was based on the efficiency of the k-means algorithm (O(kn) time complexity
and O(n + k) space complexity, analogous to the R-tree Linear split algo-
rithm) and its order independence (unlike Guttman’s linear split algorithm).
However, a disadvantage of the chosen algorithm is the fact that it requires k
to be given as input. Apparently, the “optimal” number of nodes after splitting
is not known in advance. To overcome it, the authors adopted an incremental
approach: starting from k=2 and increasing k by one each time, they com-
pared the clustering quality of two different clusterings Cluster(M + 1, k) and
Cluster(M +1, k +1) using average silhouette width, a clustering quality mea-
sure originally proposed by Kaufman and Rousseeuw [109]. In practice, the

(a) An overflowing node (b) Splitting in three groups

Fig. 2.12. Splitting an R-tree node in more than two nodes.

2.9 Deviating Variations 29

theoretical limit of kmax = M + 1 was bounded to kmax = 5 as a safe choice.
An example is illustrated in Figure 2.12, where the entries of an overflowing
node are distributed in three groups.

The empirical studies provided in the paper illustrate that the cR-tree
query performance was competitive with the R∗-tree and was much better
than that of the R-tree. Considering index construction time, the cR-tree was
shown to be at the efficiency level of the R-tree and much faster than the
R∗-tree.

2.9 Deviating Variations

Apart from the aforementioned R-tree variations, a number of interesting ex-
tensions and adaptations have been proposed that in some sense deviate dras-
tically from the original idea of R-trees. Among other efforts, we note the
following research works.

The Sphere-tree by Oosterom uses minimum bounding spheres instead of
MBRs [164], whereas the Cell-tree by Guenther uses minimum bounding poly-
gons designed to accommodate arbitrary shape objects [77]. The Cell-tree is a
clipping-based structure and, thus, a variant has been proposed to overcome
the disadvantages of clipping. The latter variant uses “oversize shelves”, i.e.,
special nodes attached to internal ones, which contain objects that normally
should cause considerable splits [78, 79].

Similarly to Cell-trees, Jagadish and Schiwietz proposed independently the
structure of Polyhedral trees or P-trees, which use minimum bounding poly-
gons instead of MBRs [96, 206].

The QR-tree proposed in [146] is a hybrid access method composed of a
Quadtree [203] and a forest of R-trees. The Quadtree is used to decompose the
data space into quadrants. An R-tree is associated with each quadrant, and it
is used to index the objects’ MBRs that intersect the corresponding quadrant.
Performance evaluation results show that for several cases the method performs
better than the R-tree. However, large objects intersect many quadrants and
therefore the storage requirements may become high due to replication.

The S-tree by Aggarwal et al. relaxes the rule that the R-tree is a balanced
structure and may have leaves at different tree levels [5]. However, S-trees
are static structures in the sense that they demand the data to be known in
advance.

A number of recent research efforts shares a common idea: to couple the
R-tree with an auxiliary structure, thus sacrificing space for the performance.
Ang and Tan proposed the Bitmap R-tree [12], where each node contains
bitmap descriptions of the internal and external object regions except the
MBRs of the objects. Thus, the extra space demand is paid off by savings
in retrieval performance due to better tree pruning. The same trade-off holds
for the RS-tree, which is proposed by Park et al. [184] and connects an R∗-
tree with a signature tree with a one-to-one node correspondence. Lastly, Lee

30 2. Dynamic Versions of R-trees

and Chung [133] developed the DR-tree, which is a main memory structure
for multi-dimensional objects. They couple the R∗-tree with this structure to
improve the spatial query performance.

Bozanis et al. have partitioned the R-tree in a number of smaller R-trees
[31], along the lines of the binomial queues that are an efficient variation of
heaps.

Agarwal et al. [4] proposed the Box-tree, that is, a bounding-volume hierar-
chy that uses axis-aligned boxes as bounding volumes. They provide worst-case
lower bounds on query complexity, showing that Box-trees are close to opti-
mal, and they present algorithms to convert Box-trees to R-trees, resulting in
R-trees with (almost) optimal query complexity.

Recently, the optimization of data structures for cache effectiveness has
attracted significant attention, and methods to exploit processors’ caches have
been proposed to reduce the latency that incurs by slow main memory speeds.
Regular R-trees have large node size, which leads to poor cache performance.
Kim et al. [110] proposed the CR-tree to optimize R-trees in main memory
environments to reduce cache misses. Nodes of main memory structures are
small and the tree heights are usually large. In the CR-tree, MBR keys are
compressed to reduce the height of the tree. However, when transferred to a
disk environment, CR-trees do not perform well. TR-trees (Two-way optimized
R-trees) have been proposed by Park and Lee [185] to optimize R-trees for
both cases, i.e., TR-trees are cache- and disk-optimized. In a TR-tree, each
disk page maintains an R-tree-like structure. Pointers to in-page nodes are
stored with fewer cost. Optimization is achieved by analytical evaluation of
the cache latency cost of searching through the TR-tree, taking into account
the prefetching ability of today’s CPUs.

2.9.1 PR-trees

The Priority R-tree (PR-Rtree for short) has been proposed in [15] and is
a provably asymptotically optimal variation of the R-tree. The term priority
in the name of PR-tree stems from the fact that its bulk-loading algorithm
utilizes the “priority rectangles”.

Before describing PR-trees, Arge et al. [15] introduce pseudo-PR-trees.
In a pseudo-PR-tree, each internal node v contains the MBRs of its chil-
dren nodes vc. In contrast to regular R-tree, the leaves of the pseudo-
PR-tree may be stored at different levels. Also, internal nodes have de-
gree equal to six (i.e., the maximum number of entries is six). More for-
mally, let S be a set of N rectangles, i.e., S = r1, . . . , rN . Each ri is of
the form (xmin(ri), ymin(ri)), (xmax(ri), ymax(ri)). Similar to Hilbert R-tree,
each rectangle is mapped to a 4D point, i.e., a mapping of r∗i = (xmin(Ri),
ymin(Ri), xmax(Ri), ymax(Ri)). Let S∗ be the set of N resulting 4D points. A
pseudo-PR-tree TS on S is defined recursively [15]: if S contains fewer than
c rectangles (c is the maximum number of rectangles that can fit in a disk
page), then TS consists of a single leaf. Otherwise, TS consists of a node v

2.9 Deviating Variations 31

with six children, the four so-called priority leaves and two recursive pseudo-
PR-trees. For the two recursive pseudo-PR-trees, v stores the corresponding
MBRs. Regarding the construction of the priority leaves: the first such leaf
is denoted as vxmin

p and contains the c rectangles in S with minimal xmin-
coordinates. Analogously, the three other leaves are defined, i.e., vymin

p , vxmax
p ,

and vymax
p . Therefore, the priority leaves store the information on the maxi-

mum/minimum of the values of coordinates. Let Sr be equal to the set that
results from S by removing the aforementioned rectangles that correspond to
priority leaves. Sr is divided into two sets S< and S> of approximately the
same size. The same definition is applied recursively for the two pseudo-PR-
trees S< and S>. The division is done by using in a round-robin fashion the
xmin, ymin, xmax, or ymax coordinate (a procedure that is analogous to that of
building a 4D k-d-tree on S∗

r).
The following is proven in [15]: a range query on a pseudo-PR-tree on N

rectangles has I/O cost O(
√

N/c + A/c), in the worst case, where A is the
number of rectangles that satisfy the range query. Also, a pseudo-PR-tree can
be bulk-loaded with N rectangles in the plane with worst-case I/O cost equal
to O(N

c logM/c
N
c).

A PR-tree is a height-balanced tree, i.e., all its leaves are at the same level
and in each node c entries are stored. To derive a PR-tree from a pseudo-PR-
tree, the PR-tree has to be built into stages, in a bottom-up fashion. First, the
leaves V0 are created and the construction proceeds to the root node. At stage i,
first the pseudo-PR-tree TSi is constructed from the rectangles Si of this level.
The nodes of level i in the PR-tree consist of all the leaves of TSi , i.e., the
internal nodes are discarded. For a PR-tree indexing N rectangles, it is shown
in [15] that a range query has I/O cost O(

√
N/c + A/c), in the worst case,

whereas the PR-tree can be bulk-loaded with N rectangles in the plane with
worst-case I/O cost equal to O(N

c logM/c
N
c). For the case of d-dimensional

rectangles, it is shown that the worst-case I/O cost for the range query is
O((N/c)1−1/d + A/c). Therefore, a PR-tree provides a worst-case optimality,
because any other R-tree variant may require (in the worst case) the retrieval
of leaves, even for queries that are not satisfied by any rectangle.

In addition to its worst-case analysis, the PR-tree has been examined ex-
perimentally. In summary, the bulk-loading of a PR-tree is slower than the
bulk-loading of a packed 4D Hilbert tree. However, regarding query perfor-
mance, for nicely distributed real data, PR-trees perform similar to existing
R-tree variants. In contrast, with extreme data (very skewed data, which con-
tain rectangles with high differences in aspect ratios), PR-trees outperform all
other variants, due to their guaranteed worst-case performance.

2.9.2 LR-trees

The LR-tree [31] is an index structure based on the logarithmic dynamization
method. LR-trees are based on decomposability. A searching problem is called
decomposable if one can partition the input set into a set of disjoint subsets,
perform the query on each subset independently, and then easily compose

32 2. Dynamic Versions of R-trees

the partial answers. The most useful geometric searching problems, like range
searching, nearest-neighbor searching, or spatial join, as we will see, are in fact
decomposable.

LR-trees consist of a number of component substructures, called blocks.
Each block is organized as a weak R-tree, termed wR-tree, i.e., a semidynamic,
deletions-only R-tree version. Whenever an insertion operation must be served,
a set of blocks are chosen for reconstruction. On the other hand, deletions are
handled locally by the block structure that accommodates the involved object.
Due to the algorithms for block construction, LR-trees achieve good tightness
that provides improved performance during search queries. At the same time,
LR-trees maintain the efficiency of dynamic indexes during update operations.

A wR-tree on a set S of items is defined as an R-tree, which either is a
legitimate created instance on only the members of S (i.e., it does not vio-
late any of the properties of the R-tree) or is constructed from a legitimate
instance on members of a set S′ ⊃ S by deleting each x ∈ S′ − S from the
leaves so that: firstly, all MBRs of the structure are correctly calculated, and,
secondly, the tree nodes are allowed to be underutilized (i.e., they may store
fewer than m entries). The approach of wR-trees is completely opposite to the
time-consuming treatment adopted by R∗-trees, according to which, to strictly
maintain the utilization, all underflowing nodes on the search path are deleted,
and the resultant “orphaned” entries are compulsorily reinserted to the tree
level that they belong.1

An LR-tree on a set S of N items is defined as a collection C = {T0, T1, . . .}
of wR-trees on a partition V = {V0, V1, . . .} of S into disjoint subsets (blocks),
such that:

1. there is a “one-to-one” correspondence Vj ↔ Tj between the subsets
(blocks) and the elements accommodated in the trees;

2.
(
Bj−1 < |Vj | ≤ Bj+1

)
∨(|Vj | = 0), for some constant B ≥ 2, which is called

“base”; and
3. |C| = O(logB n).

An insertion into an LR-tree can be served by finding the first wR-tree Tj

that can accommodate its own items, the items of all wR-trees to its left and
the new item, then destroying all wR-trees Tk, where k ≤ j, and finally bulk-
loading a new index Tj , which stores the items in the discarded structures and
the new element. This procedure is exemplified in Figure 2.13, for base B = 2
and node capacity c = 4: the LR-tree of Figure 2.13(a) accommodates 11
items. Since the binary representation of 11 is 1011, items are partitioned into
three blocks, namely V0, V1 and V3. Each block Vi is stored into wR-tree Ti.
When the item L is inserted (Figure 2.13(b)), the cardinality of the collection
becomes 12, which equals 1100 in the binary enumeration system. So the first
blocks V0, V1 must be destroyed and replaced by a single block V3, consisting

1 It is important to note that B+-trees follow a similar behavior in industrial ap-
plications, i.e., they do not perform node merging but only free nodes when they
are completely empty.

2.9 Deviating Variations 33

of the elements of the set V0∪V1∪{L}. That change is reflected to the LR-tree,
by replacing the wR-trees T0 and T1 by a single one T3.

Fig. 2.13. Insertion of item L in an LR-tree with B=2. (a) The number of elements
before insertion equals 11=10112, so there are the blocks V0, V1, V3 implemented as
wR-trees T0, T1, T3, respectively, (b) after insertion we have 12=11002 items and
therefore destruction of trees T0, T1 and replacement by a single tree T2.

34 2. Dynamic Versions of R-trees

Algorithm RangeSearch(TypeRect Q, TypeArray Root)
/* Root contains the root nodes of subtrees of LR-tree */

1. QS = {Root[i] | Root[i] ∩Q &= ∅}
2. Answer =

⋃
T∈QS RSearch(T ,Q)

3. return Answer

Fig. 2.14. The LR-tree range search algorithm.

A range query with query rectangle Q seeks for all items whose MBRs share
with Q common point(s). In LR-tree, this operation is treated by querying the
individual wR-trees and concatenating the partial results trivially in O(1) time.
The range search algorithm for a wR-tree T is given in Figure 2.14.

2.10 Summary

Evidently, the original R-tree, proposed by Guttman, has influenced all the
forthcoming variations of dynamic R-tree structures. The R∗-tree followed an
engineering approach and evaluated several factors that affect the performance
of the R-tree. For this reason, it is considered the most robust variant and has
found numerous applications, in both research and commercial systems. How-
ever, the empirical study in [105] has shown that the Hilbert R-tree can perform
better than the other variants in some cases. It is worth mentioning that the
PR-tree, although a variant that deviates from other existing ones, is the first
approach that offers guaranteed worst-case performance and overcomes the
degenerated cases when almost the entire tree has to be traversed. Therefore,
despite its more complex building algorithm, it has to be considered the best
variant reported so far.

