Massachusetts Institute of Technology
6.046J/18.410J: Introduction to Algorithms
Professors Michel Goemans and Piotr Indyk

Sample exam (with answers)

May 22, 2002

Sample exam (with answers)

e Do not open this quiz booklet until you are directed to do so.

e Quiz ends at 4:30pm. It has 4 problems with multiple parts. You have 180 minutes to
earn 90 points. Plan your time wisely.

e This final exam is open-book, open-notes. You may not use other books, bibles, or

photocopies.

e When the quiz begins, write your name on the top of every page in this quiz booklet,

because the pages will be separated for grading.

e When describing an algorithm, please describe the main idea in English. Use pseu-
docode only to the extent that it helps clarify the main ideas.

e Good luck!
Problem | Points | Grades Total
1 77
2 77
3 77
4 77
Name:

Please circle your TA’s name and recitation:
Brian Jon Josh Rachel Yoav

10am 1lam 12pm

1pm 2pm

6.046J/18.410J Sample exam (with answers) Name 2

Problem 1. Short questions

In the following questions, fill out the blank boxes. In case more than one answer is correct,
you should provide the best known correct answer. E.g., for a question “Sorting of n

elements in the comparison-based model can be done in time”, the best correct

answer is O(nlogn). No partial credit will be given for correct but suboptimal answers.
However, you do not have to provide any justification.

(a) Consider a modification to QUICKSORT, such that each time PARTITION is called,
the median of the partitioned array is found (using the SELECT algorithm) and used
as a pivot.

The worst-case running time of this algorithm is:

Answer: O(nlogn). Reason: the median can be found in O(n) time, so we have
the running time recurrence T'(n) = 27(n/2) + O(n).

(b) If a data structure supports an operation foo such that a sequence of n foo’s takes
O(nlogn) time to perform in the worst case, then the amortized time of a foo

operation is © , while the actual time of a single foo operation could

be as high as ©

Answer: Amortized time O(logn), worst-case time O(nlogn).

(c) Does there exist a polynomial time algorithm that finds the value of an s—¢ minimum

cut in a directed graph? (Yes or No)

Answer: Yes. Reason: The value of an s — ¢ minimum cut is equal to the value
of the s — ¢t maximum flow, and there are many algorithms for computing s — ¢
maximum flows in polynomial time (e.g. the Edmonds-Karp algorithm).

6.046J/18.410J Sample exam (with answers) Name 3

Problem 2. Typesetting

Suppose we would like to neatly typeset a text. The input is a sequence of n words of lengths
l1,l3,+ -+, 1, (measured in the number of fixed-size characters they take). Each line can hold
at most P characters, the text is left-aligned, and words cannot be split between lines. If a
line contains words from 7 to j (inclusive) then the number of spaces at the end of the line
iss=P—%7_,lx—(j —1i). We would like to typeset the text so as to avoid large white
spaces at the end of lines; formally, we would like to minimize the sum over all lines of the
square of the number of white spaces at the end of the line. Give an efficient algorithm for
this problem. What is its running time?

Answer:

We solve the problem with dynamic programming. Let A[j] denote the optimal “cost” (that
is, the sum of the square of number of trailing white space characters over all lines) one may
achieve by typesetting only the words 1...j (ignoring the remaining words). We can express
A[j] recursively as follows:

1=, min AU+ (P = (7] - 7))
where T[j] = Y7_, ;. A table of the values T[1...n] can be initially computed in O(n)

time. The equation above says the following: in order to optimally typeset words 1...j, we
must first optimally typeset words 1...7 for some 7 < j, and then place the remaining words
i+ 1...7 on the final line.

Using dynamic programming, we compute each value A[j] in sequence for all j = 1...n.
Each value is requires O(n) time to compute, for a total running time of O(n?). After
termination, A[n] will contain the value of the optimal solution; we can reconstruct the
solution itself (that is, the locations where we should insert line breaks) by maintaining
“backpointers” as is usually done with dynamic programming.

6.046J/18.410J Sample exam (with answers) Name 4

Problem 3. Flows

Let G be a flow network with integer capacities, and let f be an integer maximum flow
in G. Suppose that we increase the capacity of an arbitrary edge in G by one unit. Describe
an efficient algorithm to find a maximum flow in the modified flow network. Analyze the
worst-case asymptotic running time. Explain why your algorithm is correct.

Answer:

I. Algorithm:

1. Compute the residual network G’ from the new graph G’ and flow f.
2. Run DFS (or BFS) on the residual network G to find an augmenting path.

3. If an augmenting path is found, increase the flow on the augmenting path by one unit
to obtain a new flow f’ which is the maximum flow for G.

II. Analysis

stepl O(E+V)

step 2 O(E+YV)

step 3 O(V)
Running time = O(E + V)

II1. Correctness

Since G’ has integer capacities and f is an integer max flow, we can augment at most one
unit of flow along some path in G, so one pass of BFS is enough. The rest of the correctness
argument is similar to the one for the Ford-Fulkerson algorithm.

6.046J/18.410J Sample exam (with answers) Name 5

Problem 4. Princess of Algorithmia (2 parts)

Political upheaval in Algorithmia has forced Princess Michelle X. Goewomans to vacate her
royal palace; she plans to relocate to a farm in Nebraska. The princess wants to move all
of her possessions from the palace in Algorithmia to the Nebraskan farm using as few trips
as possible in her Ferrari. For simplicity, let us assume that the princess’s Ferrari has size
1, and that her n possessions z1, xs,...,z, have real number sizes between 0 and 1. The
problem is to divide the princess’s possessions into as few carloads as possible, so that all
her possessions will be transported from Algorithmia to Nebraska and so that her Ferrari
will never be overpacked. It turns out this problem is NP-hard.

Consider the following first-fit approximation algorithm. Put item z; in the first carload.
Then, for i = 2,3,...,n, put z; in the first carload that has room for it (or start a new
carload if necessary). For example, if z; = 0.2, o = 0.4, 3 = 0.6, and z4 = 0.3, the first-fit
algorithm would place z; and x5 in the first carload, x3 in the second carload, and then
x4 in the first carload (where there is still enough room). Note that all decisions are made
offline; we divide the princess’s n possessions into carloads before any trips have actually
been made.

(a) The princess’s charming husband, Craig, has asserted, “The first-fit algorithm will
always minimize the total number of car trips needed.” Give a counterexample to
Craig’s claim.

Answer:

Let n =4 and let z1 = 0.3, 9 = 0.8, z3 = 0.2, and x4 = 0.7. The optimal number
of car trips needed is 2, while the first-fit algorithm produces 3 car trips.

6.046J/18.410J Sample exam (with answers) Name

(b) Prove that the first-fit algorithm has a ratio bound of 2. (Hint: How many carloads
can be less than half full?)

Answer:

Consider a carload u of size p which is less than half full, i.e., p < 0.5. Let z; be
the first item to go into the next carload ». Then, due to the nature of the first-fit
algorithm, it follows that p+x; > 1 and x; > 0.5. Hence, carload v is more than half
full. For calculation purposes, we can transfer a portion of the load of item z; from
carload v to carload u to make carload u exactly half full while keeping carload v at
least half full. This is because 0.5 — p < z; — 0.5. After we perform this operation,
every carload is at least half full. Thus, if A is the number of carloads produced
by the first-fit algorithm, then >77' , z; > 0.5h. Note that the optimal number of
carloads OPT is at least Y} ; z;. Hence, h/OPT < 2, which proves that the first-fit
algorithm has a ratio bound of 2.

