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Prof. Drysdale
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1. [15 points]
A mixed graph is graph in which some of the edges are directed and some of the edges are undirected.
If a given mixed graph G has no directed cycle, then it is always possible to orient the remaining
undirected edges so that the resulting graph has no directed cycle. Give an efficient algorithm for
obtaining such an orientation if one exists. Prove the correctness of your algorithm and analyze
its complexity.

Solution: Create a graph G′ consisting of the vertices of G and the directed subset of the edges
of G. Topologically sort the vertices of G′. If a cycle is found during the DFS report this and
return. Otherwise direct all of the undirected edges so that they are consistent with the direction
given by the topological sort. This can be done by running through the vertices in topologically
sorted order, directing each undirected edge away from the endpoint found first. Because all of the
edges (both directed and originally undirected, but now given a direction) are consistent with the
topological sort the new graph is a DAG. Time is O(V + E), the time for topologically sorting the
vertices and then running through them (and the edges leaving them) in order.

2. [25 points]
Given n vertices v1, . . . , vn, a random graph is formed as follows: for each pair of vertices vi, vj

with i 6= j we flip a fair coin, and include directed edge (vi, vj) in the graph if and only if the coin
comes up heads. Two labeled graphs are identical if they have the same set of edges. Assume that
the graphs are represented as adjacency matrices.

(a) What is the probability that two random graphs G1 and G2 formed on the same n vertices
v1, . . . , vn are identical? Justify your answer.
Solution: There are n(n − 1) pairs of vertices in a random graph. The probability that
corresponding edges agree in both graphs is the probability that the second graph has the
same coin flip as the first, or 1

2 . The edges are chosen independently, so the odds that the
graphs are identical is 2−n(n−1).

(b) Given two random graphs G1 and G2 formed on the same n vertices v1, . . . , vn, we wish to
determine if the two graphs are identical. Give an algorithm with the fastest expected running
time that you can that solves this problem. What are the expected and worst case running
times of your algorithm?
Solution: Assume that A1 and A2 are the adjacency matrices for G1 and G2 respectively.

1
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GraphTest(A1, A2)
for each possible pair (u, v)

do if A1[u, v] = A2[u, v]
then return false

return true

The algorithm is correct, because when it returns false it has found an edge that is different
in the two graphs, and when it returns true all edges agree.
In the worst case all pairs match, and the loop is executed n(n− 1) times, for Θ(n2) time.
In the expected case we note that each time through the loop the probability that the loop
terminates on that step is 1

2 . Thus we have the same problem as determining the average
number of flips before a head is found. The expected time is

n(n−1)∑
j=1

j

2j−1
<

∞∑
j=1

j

2j−1
= 2

Thus the expected time for this algorithm is Θ(1).
(c) Given m random graphs G1, . . . Gm formed on the same n vertices v1, . . . , vn, we wish to

determine all pairs of identical graphs. Give an algorithm with the fastest expected running
time that you can that solves this problem. What are the expected and worst case running
times of your algorithm? Hint: You can do better than trying all pairs.
Solution: We modify Quicksort by replacing Partition so that it partitions graphs based
on whether the edge between some pair of vertices (u, v) is present or absent. Each level of
recursion choses a different pair to partition on. The base cases of the recursion are either
that all n(n − 1) pairs have been tested (so all graphs in the partition agree on all edges) or
that the size of the partition is 1. When we are done, we report all pairs in every subset with
size greater than 1.
The algorithm is correct. Any two graphs with all edges the same will end up in the same
partition at the end. Any two that disagree on an edge will be put into separate partitions
when the first pair of vertices where they differ is considered as as a partitioning element.
In the worst case all m graphs are identical, and each of the n(n− 1) pairs will be tested on
all m graphs. Thus the run time is Θ(mn2).
For the expected run time, consider the tree of tests, where at each test a partition is (poten-
tially) subdivided. If the tests always split the sets exactly in half, the depth of the tree would
be dlg me. The work on each level would be Θ(m), so the total work would be Θ(m lg m).
Note that this is a best case for our algorithm, so will be a lower bound for the work done by
our algorithm.
We are not guaranteed even splits, but because the splits are done on edges determined by
flips of fair coins they should be close to even. Thus the expected run time of this algorithm
should be Θ(m lg m). We must prove this.
One way to bound the total work W done is:

W ≤
n(n−1)∑

j=0

mXj
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where Xj is an indicator random variable that indicates that some partition on level j contains
more than one element. (Note that we call the top level of the tree level 0, so our sum starts
at 0. The work done at level n(n − 1) is simply the test to see if there are more edges to
compare.) This is an overestimate, because once a partition is a singleton it does not appear
further down the tree. Therefore many levels will not require m work.
Linearity of expectation gives

E[W ] ≤
n(n−1)∑

j=0

mE[Xj ].

A crude way to bound E[Xj ] is to note that if two graphs are in the same partition at level j
they must agree in the first j pairs tested, which happens with probability 2−j . If we consider
each possible pair, then the probability that two graphs agree on the first j tests so are in
the same partition is upper bounded by

(m
2

)
2−j . This is a horrible overestimate, because we

are adding probabilities of events that are not mutually exclusive. But it is adequate for our
purpose.
We note that when j = d2 lg me that(

m

2

)
2−j ≤ m(m− 1)

2m2
<

1
2

so when j > d2 lg me

E[Xj ] <

(
m

2

)
2−j ≤ m(m− 1)

2m2
2−j+d2 lg me < 2−j−1+d2 lg me

This suggests splitting the sum

E[W ] ≤
d2 lg me∑

j=0

mE[Xj ] +
n(n−1)∑

j=d2 lg me+1

mE[Xj ]

The first sum has d2 lg me + 1 terms, so even if E[Xj ] = 1 for each j this sum is at most
md2 lg me+ m. The second sum can be bounded:

n(n−1)∑
j=d2 lg me+1

mE[Xj ] <

n(n−1)∑
j=d2 lg me+1

m2−j−1+d2 lg me <
∞∑

k=0

m

4
2−k =

m

2

Together these show that E[W ] < md2 lg me+ 3m
2 = O(m lg m).

This assumes that the recursion will be stopped because each set will be a singleton, which
will not be true if lg m is larger than n(n− 1). In any case we can say that the expected time
is Θ(min(m lg m,mn2)).

3. [20 points]
An independent set of a graph G is a set of vertices, no two of which are adjacent. Finding
an independent set is NP-complete, so we are unlikely to be able find independent sets quickly.
Therefore we consider an approximation algorithm for a special class of graphs.
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(a) Suppose the undirected graph G is regular of degree d. That is, every vertex of G has exactly
d vertices adjacent to it. For any fixed d, give an algorithm to find a independent set of size
c|V | for as large a value of the constant c as you can. Express c as a function of d.
Solution: A simple greedy strategy will achieve a constant bound. Pick any vertex. Remove
it and all of its neighbors from G. Repeat until no vertices are left. The set will be an
independent set, because when we choose a vertex none of its neighbors will remain in the
graph to be chosen later.
At each step we remove at most d+1 vertices, so we can repeat this at least |V |

d+1 times. Thus
we have an algorithm with c = 1

d+1 . In the case where G consists of k complete graphs on
d + 1 vertices |V | = k(d + 1) and the maximum independent set has size k, so the size of the
largest independent set is exactly |V |

d+1 . Therefore the constant cannot be improved, although
choosing a vertex of smallest degree at each step would be a good heuristic.

(b) For what ρ is your algorithm a ρ-approximation algorithm? To solve this come up with a
good estimate of the maximum-sized independent set possible in a regular graph of degree d.
Prove that your estimate is tight.
Solution: A bipartite graph with k vertices in each half and vertex ui in the left half
connected to vertices vi, vi+1, . . . , vi+d−1 in the right half (where the addition is done mod k)
has an independent set of size k, namely the vertices in the left half. So an independent set
can have size |V |/2.
No larger independent set is possible in a regular graph of degree d. Suppose there is an
independent set of size k in G. Then there are exactly kd edges coming out of the independent
set. Because every vertex has degree d, at most d of these edges can end at a single vertex not
in the independent set. Thus there must be at least kd/d = k vertices not in the independent
set. This shows that at most half the vertices can be in an independent set.
Given this, we can argue that ρ =(size of optimal independent set)/(size of set we find) is at
most

|V |
2
|V |
d+1

= (d + 1)/2

.

4. [20 points]
You are given a weighted directed graph G = (V,E), with a source s and edge weights w(u, v)
for each edge (u, v) ∈ E. Furthermore, you know that the only edges with negative weights leave
the source vertex s. Give the most efficient algorithm that you can to compute the single-source
shortest paths from s to all other vertices (or report that G has a negative cycle, if one exists).
Why does your algorithm work, and what is its run time?

Solution: The reason that Dijstra’s algorithm cannot handle negative edge weights is that they
can violate the loop invariant given on p. 597 of CLRS: At the start of each iteration of the while
loop of lines 4-8, d[v] = δ(s, v) for each vertex v ∈ V . There are exactly two places where the
non-negativity of edge weights is used. The first is on p. 597, where the proof notes that s is the
first vertex added to S, and when that happens d[s] = δ(s, s) = 0. If there is a negative cycle
involving s the claim that d[s] = δ(s, s) = 0 would be false.
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The second place where non-negativity of edge weights is needed is in the second paragraph of the
proof on p. 598. It is used to prove that if y occurs before u on a shortest path from s to u, then
δ(s, y) ≤ δ(s, u).

However, all that is really needed to prove the claim is that there are no negative weight edges on
the shortest path from s to u in the section between y and u. But y cannot be s (because s ∈ S and
y ∈ V − S) and the only negative weight edges in G leave s. Therefore unless s appears between
y and u on the shortest path from s to u there will be no negative weight edges between y and u
and the claim that δ(s, y) ≤ δ(s, u) still holds. There is always a simple shortest path from s to u
(so s will not appear between y and u) unless there is a negative weight cycle in G.

So Dijstra’s algorithm will work correctly in the presence of negative edges leaving s as long as
there is no negative weight cycle. Any negative weight cycle must include s, because all cycles not
including s have no negative weight edges. In fact, since all paths start at s a negative weight cycle
will result in d[s] being set to a negative value during the call to Relax when u is s’s predecessor on
a negative cycle. So we need to modify Dijkstra’s algorithm by adding a test at the end to make
sure that d[s] is not negative. If it is, we report a negative cycle. If not, we have a valid shortest
path graph.

The run time of Dijkstra is O(E + V log V ) using Fibonacci heaps.

5. [15 points]
A graph G has edges which are colored either red or blue. Give the fastest algorithm that you
can to compute a spanning tree with as few blue edges as possible. What is the run time of your
algorithm?

Solution: Assign the red edges weight 1 and the blue edges weight 2 and run an algorithm to
compute an MST. The MST will be a spanning tree, and minimizing the total weight is equivalent
to minimizing the heavier blue edges.

This leaves the question of what algorithm to use. Kruskal’s algorithm can sort the edges in O(E)
time using counting sort, but the disjoint set union algorithm is still needed, so its run time is
O((V + E)α(V )). Prim’s algorithm can use a priority queue consisting of an array. We saw in
Exercise 23.2-5 that when weights run from 1 to W that Prim’s algorithm can be made to run in
time O(E + WV ). Because W = 2 this is O(E + V ), which is as fast as we could hope to get the
algorithm to run.

6. [20 points]
You are given a directed network G = (V,E) in which each edge (u, v) has a positive integral
capacity c(u, v). G has a source s and a sink t. An edge is called sensitive if it crosses some
minimum cut (S, T ) of the network, going from S to T .

(a) Show that there is a graph with an exponential number of different minimum cuts.
Solution: Consider the graph with vertices s, t, and u1, . . . , un. Connect s to each of the ui

by an edge of capacity 1 and connect each ui to t by an edge of capacity 1. Then the maximum
flow is n. Let U = {u1, . . . , un} and W ⊆ U . Then S = {s} ∪ W and T = {t} ∪ U − W is a
minimum cut. There are 2n subsets of U , so 2n minimum cuts.
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(b) Give as efficient a polynomial time algorithm as you can to find all sensitive edges. Prove its
correctness and analyze its runtime.
Solution: A sensitive edge crosses a minimum cut. Reducing its capacity will therefore
reduce the total flow in the network. Conversely, if reducing an edge’s capacity does not
reduce the total flow in the network then the edge cannot cross any minimum cut and is
therefore not sensitive. This gives a test for finding sensitive edges.
Use the fastest available network flow algorithm to compute a maximum flow. For each
saturated edge, reduce its capacity by one in the original graph and determine if that reduces
the flow. The solution to Problem 26-4b shows how to do this in O(E) time. If the flow
reduces, then the edge is sensitive and is added to the list of sensitive edges. If reducing the
capacity does not reduce the flow then the edge is not sensitive.
Thus we can solve the problem in time O(E2) plus the time to solve the network flow problem.
The chapter notes on p. 689 give choices for solving network flow.

7. [25 points]
You are to design a data structure that supports the following operations:

CreateSet(x1, x2, . . . , xk) - Creates a k-element set containing x1, x2, . . . , xk. It returns a refer-
ence to the set.

DeleteSet(r) - Removes the set that r refers to.

Union(r1, r2) - Forms the union of the two sets referred to by r1 and r2 and returns a reference
to the merged set.

FindLargest() - Returns a reference to one of the sets that has the largest number of elements.
Thus if the sets are {a, b}, {c, d, e}, and {x, y, z} it should return a reference to either {c, d, e}
or {x, y, z}.

The amortized time for CreateSet should be O(k) and the amortized time for all other operations
should be O(1).

Your structure should include an array of references, one for each possible set size, and you should
bucket the sets by size.

(a) Assume that no set will ever contain more than M items. Describe your data structure in
detail and explain how to perform each operation. (Note that you do not have time to initialize
the array of M elements. You can allocate it in constant time, but cannot initalize it.)
Solution: Each set will be represented by a circular doubly linked list of elements. The
list will also have a field containing its size (number of elements). The data structure will
implement a priority queue using an array Q with indices 1 to M , as recommended above.
Item Q[i] will eventually hold the list head for a doubly linked list of sets of size i. The
variable biggest will hold the largest i for which Q[i] is a non-empty list, and is initially 0.
We also have a variable maxAssigned, which keeps track of the maximum position in array
Q which has been initialized. At the start maxAssigned is set to 0.



CS 25 Solution to Final Exam — F03 7

CreateSet(x1, x2, ..., xk)
r = new circular linked list containing items x1, ..., xk.
size[r] = k
while maxAssigned < k

do maxAssigned = maxAssigned +1
Q[maxAssigned] = new empty list

insert r into the list Q[k].
if k > biggest

then biggest = k
return r

DeleteSet(r)
remove r from the list in Q[size[r]]
while biggest > 0 and Q[biggest] is empty

do biggest = biggest - 1

Union(r1, r2)
remove r1 from the list in Q[size[r1]]
remove r2 from the list in Q[size[r2]]
r = new circular linked list formed by joining the elements in r1 and r2
size[r] = size[r1] + size[r2]
while maxAssigned < size[r]

do maxAssigned = maxAssigned +1
Q[maxAssigned] = new empty list

insert r into the list at Q[r[size]]
if r[size] > biggest

then biggest = r[size]
return r

FindLargest()
if biggest = 0

then throw "no sets" error
else return first item in Q[biggest]

This works because biggest always keeps track of the largest i such that Q[i] is not empty,
which contains the list of largest sets. Thus FindLargest can return a largest set immediately,
or throw an error if all the lists are empty. The obvious places where biggest has to be updated
are in CreateSet, when a k-set is created with k > biggest, and in Union, when the union is
bigger than the former biggest. But it also has to be updated in DeleteSet, because if the last
item in Q[biggest] is deleted then we have to find the next largest non-empty Q[j] and set
biggest = j. This is done in the while loop. (Note that if Q[biggest] does not become empty
then biggest does not change.)
The other tricky item is keeping track of which positions in Q have been initialized, and
initializing new positions when necessary. Originally none of Q is initialized. Whenever a
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new, larger set is created it is necessary to initialize all positions up to that new size when
necessary. The loops that do this appear in CreateSet and Union, and they also update the
value of maxAssigned.

(b) Justify that the amortized running time of each operation is as stated above. (Don’t worry
about time taken to free up memory.)
Solution: First we give the actual run times for each operation, and then amortize.

CreateSet(x1, x2, . . . , xk) - Θ(k) time to create a circular linked list of size k and O(k) to
initialize any uninitialized positions (at most k of them). Inserting into list Q[k] and
updating biggest are O(1) time.

DeleteSet(r) - O(1) to do the actual removal, because we have a reference to the set, and
the sets are in a doubly linked list. Updating biggest could cost time size[r].

Union(r1, r2) - Removals are O(1) as noted for DeleteSet. Joining two circular linked
lists into one bigger one, computing size[r], inserting r into Q[size[r]], and updat-
ing biggest are O(1). Updating maxAssigned and initializing new lists can take time
min(size[r1], size[r2]). (Since both sets existed, everything up to max(size[r1], size[r2])
was already initialized.

FindLargest() - O(1)

Note that all operations except creating the circular linked list to represent the set in Create-
Set, initializing more positions in Q (which updates maxAssigned) in CreateSet and Union,
and updating biggest in DeleteSet have O(1) actual cost. Creating the circular linked list in
CreateSet is no problem, because CreateSet can have Θ(k) amortized time, which is the time
needed. We need to amortize the cost of initializing Q and of updating biggest in DeleteSet.
I will use the accounting method to amortize the costs. CreateSet is charged 3k. We use k
of the tokens to pay for creating the circular linked list that represents the set. Two tokens
are put on each list element. One is labeled “array initialization” and the other is labeled
“updating biggest”. Note that CreateSet is Θ(k), as required.
Whenever we need to initialize positions in Q it is because we have a set r with n = size[r]
elements to insert in Q[n]. Each of these n elements originally had a token placed on it labeled
“array initialization”. I claim that the number of “array initialization” tokens currently on
the elements of set r are sufficient to carry out the cost of the initialization loop. If an element
currently does not have a token for this purpose it can only be because it was spent earlier.
Therefore if we spend all the “array initialization” tokens currently on elements in set r we
will have spent at least n tokens on array initialization, either now or earlier. No position in
Q needs to be initialized more than once, so there are enough “array initialization” tokens on
elements in set r to pay for the necessary array initialization.
When we call DeleteSet(r) we may have to spend size[r] time updating biggest. However,
none of the elements in set r have been deleted before, so there are size[r] “updating biggest”
tokens on the size[r] elements in r. Use these to pay for updating biggest.

(c) If you had no upper limit M how could you change things so that you could still achieve the
same amortized running times? Outline the difficulty and how you would get around it.
Solution: The problem is that when a set gets larger than M we need to allocate a larger
array Q for the priority queue and reset M to the larger size. If we increased the size by a
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constant amount each time a bigger set was created by a Union it could be too expensive.
The solution is to double the size when a larger set is created via a Union and to more than
double the size when a larger set is created by a CreateSet.
If a CreateSet is to create a set of size k > M , first create a new array of size 2k and copy the
references to the linked lists in items Q[1] to Q[maxAssigned] to the corresponding locations
in the new array. Then set M to 2k and Q to the new array. Proceed with the code for
CreateSet as given above.
When size[r1]+ size[r2] > M in Union, first create a new array of size 2M and copy over the
references to the linked lists in items Q[1] to Q[maxAssigned]] to the corresponding locations
in the new array. Then set M to 2M and Q to the new array. Proceed with the code for
Union as given above. Note that size[r1] + size[r2] ≤ 2M , so there will be a place for the
new set in the new array.
To pay for this recopying we charge CreateSet 5k instead of 3k. Two tokens labeled “array
doubling” are placed on each token. Because allocating the new array, resetting M , and
resetting Q take O(1) time total all that remains to be paid for using these tokens is copying
entries in the array.
When CreateSet creates a new array it is because the number of new items created is greater
than the current M . Therefore there are at least twice as many tokens on the elements of the
new set marked “array doubling” as are needed to copy all of the assigned elements. Take
enough tokens to pay for the copying.
When Union creates a new set r with size[r] > M , there must be at least M + 1 elements in
set r. The maximum number of copyings would be if the size of the array doubled each time,
which would be M/2+M/4+M/8+ . . . < M total copyings. That would have cost M “array
doubling” tokens. But there were at least 2(M + 1) “array doubling” tokens assigned to the
M + 1 elements in set r. Therefore there must be at least 2(M + 1) − M = M + 2 “array
doubling” tokens on the elements in set r, so we can take enough to pay for this copying.


