Linear Time Selection
(CLRS 9)

1 Quick-Sort Review

e The last two lectures we have considered Quick-Sort:

— Divide A[1...n] (using PARTITION) into subarrays A’ = A[l..¢— 1] and A” = A[g+ 1...n] such that
all elements in A” are larger than A[g] and all elements in A’ are smaller than A[q].

— Recursively sort A’ and A”.
e We discussed how split point ¢ produced by PARTITION only depends on last element in A
e We discussed how randomization can be used to get good expected partition point.
e Analysis:

— Best case (¢ =n/2): T(n) =2T(n/2)+ 6O(n) = T(n) = O(nlogn).
— Worst case (g=1): T(n) =T(1) + T(n— 1)+ O(n) = T(n) = O(n?).

— Expected case for randomized algorithm: ©(nlogn)

2 Selection

e If we could find element e such that rank(e) = n/2 (the median) in O(n) time we could make quick-sort
run in O(nlogn) time worst case.

— We could just exchange e with last element in A in beginning of PARTITION and thus make sure
that A is always partition in the middle

e We will consider a more general problem than finding the i’th element:

— Selection problem

‘ SELECT(%) is the ¢’th element in the sorted order of elements ‘

— Note: We do not require that we sort to find SELECT(4)

— Note: SELECT(1)=minimum, SELECT(n)=maximum, SELECT(n/2)=median



e Special cases of SELECT(4)

— Minimum or maximum can easily be found in n — 1 comparisons

* Scan through elements maintaining minimum/maximum

— Second largest/smallest element can be found in (n — 1) 4+ (n — 2) = 2n — 3 comparisons

* Find and remove minimum/maximum

* Find minimum/maximum

— Median:

* Using the above idea repeatedly we can find the median in time >

n?/2—(n/2-(n/2+1))/2 =0O(n?)
* We can easily design O(nlogn) algorithm using sorting

e Can we design O(n) time algorithm for general i?

n/2
i=1

(n—i) =n?/2-37

@/2 .

K2

Z1t=

e If we could partition nicely (which is what we are really trying to do) we could solve the problem

— by partitioning and then recursively looking for the element in one of the partitions:

SELECT(A, p,r,1)

q=PARTITION(A, p, 1)

p

IF p = r THEN RETURN A[p)|

|
i

k=q—p+1
IF i < k THEN

ELSE

FI

I

RETURN SELECT(A, p, q,1)

RETURN SELECT(A,q + 1,7,i — k)

Select i’th elements using SELECT(A, 1,n,1%)

— If the partition was perfect (¢ = n/2) we have

T(n)

T(n/2)+n
n+n/24+n/d+n/8+---
logn n
£ 90
=0
logn 1.
n: Z(E)l
i=0
0 11-
n-Z(?
i=0
O(n)

+1



Note:
x The trick is that we only recurse on one side.
% In the worst case the algorithm runs in T'(n) = T'(n — 1) +n = O(n?) time.
* We could use randomization to get good expected partition.
* Even if we just always partition such that a constant fraction (o < 1) of the elements are

logn

eliminated we get running time 7'(n) = T'(an) + n =n Y 5" o' = O(n).
e It turns out that we can modify the algorithm and get T'(n) = ©(n) in the worst case

— The idea is to find a split element ¢ such that we always eliminate a fraction of the elements:

SELECT(%)
x Divide n elements into groups of 5
* Select median of each group (= [%£] selected elements)
* Use SELECT recursively to find median g of selected elements
x Partition all elements based on ¢

q

| ]

k n-k—=

*

Use SELECT recursively to find i’th element
- If i < k then use SELECT(7) on k elements
- If 4 > k then use SELECT(i — k) on n — k elements

— If n/ is the maximal number of elements we recurse on in the last step of the algorithm the running
time is given by T'(n) = ©(n) + T([%]) + ©(n) + T'(n')

o Estimation of n':

— Consider the following figure of the groups of 5 elements

x An arrow between element e; and e, indicates that e; > es
* The [%] selected elements are drawn solid (g is median of these)

* Elements > ¢ are indicated with box

o O




— Number of elements > ¢ is larger than 3(3[2] —2) > 3% — 6

* We get 3 elements from each of %(%1 columns except possibly the one containing ¢ and the

last one.

. . . 3
— Similarly the number of elements < ¢ is larger than 55 — 6

3
3n

We recurse on at most n’ =n — (E —

) = &n + 6 elements

e So SELECTION(4) runs in time T'(n) = ©(n) + T([2]) + T'(5n + 6)

e Solution to T'(n) = n+ T([2]) + T(&n + 6):

— Guess T'(n) < cn

— Induction:

IN

IN

<

n 7
g]) + T(1—07’L+ 6)

7
n+c- (g}—i—c-(ﬁn—i—G)

tel bt Lento
n C5 & 1OCTL C

) ntn+7
—Cn n &
10

cn

n+T(]

If7c+n< %cn which can be satisfied (e.g. true for ¢ = 20 if n > 140)

— Note: It is important that we chose every 5’th element, not all other choices will work (homework).



