Recurrences
(CLRS 4.1-4.2)

e Last time we discussed divide-and-conquer algorithms

Divide and Conquer

To Solve P:
1. Divide P into smaller problems P, Py, Ps.....Py.
2. Conguer by solving the (smaller) subproblems recursively.

3. Combine solutions to P;, P, ...P; into solution for P.

e Analysis of divide-and-conquer algorithms and in general of recursive algorithms leads to
recurrences.

e Merge-sort lead to the recurrence T'(n) = 27'(n/2) +n

o(1) Ifn=1

Tz +T(lz)) +©(n) Ifn>1

— but we will often cheat and just solve the simple formula (equivalent to assuming that
n = 2F for some constant k, and leaving out base case and constant in ©).

— or rather, T'(n) = {

Methods for solving recurrences

1. Substitution method
2. Tteration method

e Recursion-tree method

e (Master method)

1 Solving Recurrences with the Substitution Method

e Idea: Make a guess for the form of the solution and prove by induction.
e Can be used to prove both upper bounds O() and lower bounds €().
e Let’s solve T'(n) = 2T (n/2) 4+ n using substitution

— Guess T'(n) < enlogn for some constant ¢ (that is, T'(n) = O(nlogn))
— Proof:

* Base case: we need to show that our guess holds for some base case (not necessarily
n = 1, some small n is ok). Ok, since function constant for small constant n.

* Assume holds for n/2: T'(n/2) < ¢ log § (Question: Why not n — 17?)
Prove that holds for n: T'(n) < enlogn

T(n)

2T (n/2) +n
n., n
2(05 log 5) +n

IN

n
cnlogg +n
= cnlogn —cnlog2+n

= cnlogn—cn+n

Sookife>1

e Similarly it can be shown that 7'(n) = Q(nlogn)

Exercise!

e Similarly it can be shown that T'(n) = T(|5]) + T([5]) +n is ©(nlgn).
Exercise!
e The hard part of the substitution method is often to make a good guess. How do we make

a good (i.e. tight) guess??? Unfortunately, there’s no “recipe” for this one. Try iteratively
0(n3),Q(n?),0(n?),2(n?) and so on. Try solving by iteration to get a feeling of the growth.

2 Solving Recurrences with the Iteration/Recursion-tree Method

e In the iteration method we iteratively “unfold” the recurrence until we “see the pattern”.

e The iteration method does not require making a good guess like the substitution method (but
it is often more involved than using induction).

e Example: Solve T'(n) = 8T(n/2) +n? (T(1) =1)

T(n) = n®>+8T(n/2)

.2 n 2
= n?+8(ET(5) + (5)°)
2
= T(= >
n°+8 (22)—1—8(4))
n
= n®+2n%+ 82T(§)
2 2 2 n 2
= n°+2n“+38 (8T(§)+(2—2))
2
.2 2 3 1 2,1
= n?+2n?+2%2 + 83T(%)

= n2+om? 42202+ 232 ot .

— Recursion depth: How long (how many iterations) it takes until the subproblem has
constant size? i times where 5z =1 =i =logn

— What is the last term? 8'7°(1) = 8logn

T(n) = n?+2n%+22n% + 2302 4+ 24n? 4 4 2len—1,2 4 glogn
logn—1
— Z 2kn2 + 8logn
k=0
logn—1

— n2 Z 2k+(23)logn
k=0

e Now Z}fﬁgil 2% is a geometric sum so we have Z}fﬁgil 2k = @(2lgm—1) = O(n)

° (23)logn — (2logn)3 — n3

o
2
[

n?-0(n) +n?
o(n?)

2.1 Recursion tree

A different way to look at the iteration method: is the recursion-tree, discussed in the book (4.2).

e we draw out the recursion tree with cost of single call in each node—running time is sum of
costs in all nodes

e if you are careful drawing the recursion tree and summing up the costs, the recursion tree is
a direct proof for the solution of the recurrence, just like iteration and substitution

e Example: T'(n) = 8T (n/2) +n? (T(1) =1)

n ° 2) ¥ 3
yo)

(/2)2

T(v4) -~ T(n/4)

log n)

2

+

(n/2)2 8(n/2y= 2n?

+

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr F(n/ay= 2r?

o o ® 8
TOLY THLY oo T(D

T(n) =n? +2n% + 22n% + 2302 + 2402 ... 4 2losn—1p2 4 glogn

3 Matrix Multiplication

3.1

Let X and Y be n X n matrices

T11 T12 Tin
To1 T22 T1n
X =4 w31 32 Tin
Tnl ITn2 Tnn

We want to compute Z =X - Y

= Zij = 2k=1 Xik * Yij
Naive method uses = n? - n = O(n?) operations
Divide-and-conquer solution:

StHE

(A-E+B-G)
C D G H

(C-E+D-G)

(A-F+B-H)
(C-F+D-H)

— The above naturally leads to divide-and-conquer solution:
x Divide X and Y into 8 sub-matrices A, B, C, and D.

* Do 8 matrix multiplications recursively.

« Compute Z by combining results (doing 4 matrix additions).

— Lets assume n = 2¢ for some constant ¢ and let A, B, C and D be n/2 x n/2 matrices
* Running time of algorithm is T'(n) = 8T'(n/2) + ©(n?) = T'(n) = O(n?)

— But we already discussed a (simpler/naive) O(n?) algorithm! Can we do better?

Strassen’s Algorithm
Strassen observed the following:

RCHEHE

C D (Sﬁ + S7)
where

(S1+ S2 — Sy + S6)

(S4+S5)
(S2+ S5+ 55— 57)

Sy = (A+D) - (F+H)
S3 = (A-C)-(E+F)
Sys = (A+B)-H
Ss = A-(F—-H)
S = D-(G-EFE)
S = (C+D)-FE

— Lets test that Sg + S7isreally C-E+ D -G

S¢+S7 = D-(G-E)+(C+D)-FE
= DG-DE+CE+ DFE
DG+ CE

e This leads to a divide-and-conquer algorithm with running time T'(n) = 7T (n/2) + ©(n?)

— We only need to perform 7 multiplications recursively.

— Division/Combination can still be performed in ©(n?) time.

e Lets solve the recurrence using the iteration method

T(n) = 7T(n/2)+ n?

n n
= W T(T() + (5))
7 n
= 0t ()" + T ()
7 n n
= o () + (T (5) + (5)°)
7 7 n
= n?+ (2—2)n2 + (ﬁ)2 n* 4 73T(§)
7 7 7 7
_ n2+(2_2)n2+(?)2n2+(?)3n2““+(2_2)logn—1n2+7logn
logn—1 7
— Z (§)1n2+7logn
1=0
7
— 77,2 . @((?)logn—l) + 710gn
7logn
_ 2 logn
= n - @((22)710%) + 7 S
logn
_ n2'@(7n2)+7logn
— @(7logn)
— Now we have the following;:
Tlogn 7%%
— (7log7n)(1/10g72)
— n(1/10g72)
logo 7
— nlogQQ
— nlog?
— Or in general: @l°8x™ = plogr®

So the solution is T'(n) = @(n10g7) — @(n2.81...)
e Note:

— We are ’hiding’ a much bigger constant in O() than before.

2.376..) (

— Currently best known bound is O(n another method).

— Lower bound is (trivially) Q(n?).

4 Master Method

e We have solved several recurrences using substitution and iteration.
e we solved several recurrences of the form 7'(n) = aT'(n/b) +n¢ (T(1) =1).

— Strassen’s algorithm = T'(n) = 7T(n/2) + n? (a = 7,b = 2, and ¢ = 2)
— Merge-sort = T'(n) =27 (n/2) +n (a =2,b =2, and ¢ = 1).

e It would be nice to have a general solution to the recurrence T'(n) = aT'(n/b) + n¢

T(n)=aT (%) +n° a>1,b>1,¢>0
U

O(n'oer) a > b°
T(n) =13 ©(n‘logyn) a=1>0°

O(n°) a < b°

Proof (Iteration method)

T(n) = aT(})+n°

nt+ (&) n° +a2T(b%)c
e+ (2)nc+a ((#) +al (%))
= n°+(§)n° —I-(,%)an—i—a:gT(b%)

= n° +(§)nt+ (4 L)? nc—i-(%)371‘3—#(%)4nc+...+(l%)logbnflnc—i-alogb”T(l)
_ Zlogbn 1(C)k—l—abgbn

a
be
Elogbn 1(%)k+n10gba

. n+l__
Recall geometric sum Y_7_ga% = 1 = ©(a")

o [a<t]

a<b e L <= (g <y (a)k = 1_(1%) =0(1)
a < b° & logya < log, b° = ¢ '
T(n) = noX " ()" +nlee

= n®-0(1)—i—nk’gba

= 0O(n°

.
a=beit=1= Zlogbn ! (bi) Zlogbn "1 = 0O(log, n)
a = b° < log,a = log, b° = ¢
Tn) = L2 ()" + nlome
= nO(log, n) + nlogy e
= O(n‘logyn)

.
a>b e g > 1= (E) =0 ((£)") = 6 () =0 (5)
T(n) = n¢ @(logbn) + plogea

— @(logba)+nlogba
— @(nlogba)

e Note: Book states and proves the result slightly differently (don’t read it).

5 Changing variables
Sometimes reucurrences can be reduced to simpler ones by changing variables

e Example: Solve T'(n) = 2T(v/n) + logn

Let m =logn = 2m =n = /n = 2"/2
T(n) = 2T(\/n) + logn = T(2™) = 2T(2™/?) + m

Let S(m) =T(2™)
T(2™) = 2T(2™?) +m = S(m) = 2S(m/2) +m
= S(m) = O(mlogm)
= T(n)=T(2™) = S(m) = O(mlogm) = O(log nlog log n)

6 Other recurrences
Some important/typical bounds on recurrences not covered by master method:
e Logarithmic: ©(logn)

— Recurrence: T'(n) =1+ T (n/2)
— Typical example: Recurse on half the input (and throw half away)
— Variations: T'(n) =1+ 7'(99n,/100)

e Linear: O(N)

— Recurrence: T'(n) =1+ T(n—1)
— Typical example: Single loop
— Variations: T'(n) =1+27T(n/2),T(n) =n+1T(n/2),T(n) =T(n/5)+T(7n/10+6) +n

e Quadratic: ©(n?)

— Recurrence: T'(n) =n+T(n —1)
— Typical example: Nested loops

e Exponential: ©(2")

— Recurrence: T'(n) = 2T'(n — 1)

