
Recurrences
(CLRS 4.1-4.2)

• Last time we discussed divide-and-conquer algorithms

Divide and Conquer

To Solve P:

1. Divide P into smaller problems P1, P2, P3.....Pk.

2. Conquer by solving the (smaller) subproblems recursively.

3. Combine solutions to P1, P2, ...Pk into solution for P.

• Analysis of divide-and-conquer algorithms and in general of recursive algorithms leads to
recurrences.

• Merge-sort lead to the recurrence T (n) = 2T (n/2) + n

– or rather, T (n) =

{

Θ(1) If n = 1
T (dn

2 e) + T (bn
2 c) + Θ(n) If n > 1

– but we will often cheat and just solve the simple formula (equivalent to assuming that
n = 2k for some constant k, and leaving out base case and constant in Θ).

Methods for solving recurrences

1. Substitution method

2. Iteration method

• Recursion-tree method

• (Master method)

1

1 Solving Recurrences with the Substitution Method

• Idea: Make a guess for the form of the solution and prove by induction.

• Can be used to prove both upper bounds O() and lower bounds Ω().

• Let’s solve T (n) = 2T (n/2) + n using substitution

– Guess T (n) ≤ cn log n for some constant c (that is, T (n) = O(n log n))

– Proof:

∗ Base case: we need to show that our guess holds for some base case (not necessarily
n = 1, some small n is ok). Ok, since function constant for small constant n.

∗ Assume holds for n/2: T (n/2) ≤ cn
2 log n

2 (Question: Why not n − 1?)
Prove that holds for n: T (n) ≤ cn log n

T (n) = 2T (n/2) + n

≤ 2(c
n

2
log

n

2
) + n

= cn log
n

2
+ n

= cn log n − cn log 2 + n

= cn log n − cn + n

So ok if c ≥ 1

• Similarly it can be shown that T (n) = Ω(n log n)

Exercise!

• Similarly it can be shown that T (n) = T (bn
2 c) + T (dn

2 e) + n is Θ(n lg n).

Exercise!

• The hard part of the substitution method is often to make a good guess. How do we make
a good (i.e. tight) guess??? Unfortunately, there’s no “recipe” for this one. Try iteratively
O(n3),Ω(n3), O(n2),Ω(n2) and so on. Try solving by iteration to get a feeling of the growth.

2

2 Solving Recurrences with the Iteration/Recursion-tree Method

• In the iteration method we iteratively “unfold” the recurrence until we “see the pattern”.

• The iteration method does not require making a good guess like the substitution method (but
it is often more involved than using induction).

• Example: Solve T (n) = 8T (n/2) + n2 (T (1) = 1)

T (n) = n2 + 8T (n/2)

= n2 + 8(8T (
n

22
) + (

n

2
)2)

= n2 + 82T (
n

22
) + 8(

n2

4
))

= n2 + 2n2 + 82T (
n

22
)

= n2 + 2n2 + 82(8T (
n

23
) + (

n

22
)2)

= n2 + 2n2 + 83T (
n

23
) + 82(

n2

42
))

= n2 + 2n2 + 22n2 + 83T (
n

23
)

= . . .

= n2 + 2n2 + 22n2 + 23n2 + 24n2 + . . .

– Recursion depth: How long (how many iterations) it takes until the subproblem has
constant size? i times where n

2i = 1 ⇒ i = log n

– What is the last term? 8iT (1) = 8log n

T (n) = n2 + 2n2 + 22n2 + 23n2 + 24n2 + . . . + 2log n−1n2 + 8log n

=
log n−1

∑

k=0

2kn2 + 8log n

= n2
log n−1

∑

k=0

2k + (23)log n

• Now
∑log n−1

k=0 2k is a geometric sum so we have
∑log n−1

k=0 2k = Θ(2log n−1) = Θ(n)

• (23)log n = (2log n)3 = n3

T (n) = n2 · Θ(n) + n3

= Θ(n3)

3

2.1 Recursion tree

A different way to look at the iteration method: is the recursion-tree, discussed in the book (4.2).

• we draw out the recursion tree with cost of single call in each node—running time is sum of
costs in all nodes

• if you are careful drawing the recursion tree and summing up the costs, the recursion tree is
a direct proof for the solution of the recurrence, just like iteration and substitution

• Example: T (n) = 8T (n/2) + n2 (T (1) = 1)

(n/2)2 (n/2)2

(n/4)2 (n/4)2

n2 n2

(n/2)2 (n/2)2

T(n/4)

n2

T(n/4)

T(n)
1)

T(n/2) T(n/2)

n22)

T(1) T(1) T(1)

8(n/2) = 2n

8 (n/4) = 2 n

2 2

2 2 22

log n
8 T(1)

+

+

+

+

3)

log n)

T (n) = n2 + 2n2 + 22n2 + 23n2 + 24n2 + . . . + 2log n−1n2 + 8log n

4

3 Matrix Multiplication

• Let X and Y be n × n matrices

X =



























x11 x12 · · · x1n

x21 x22 · · · x1n

x31 x32 · · · x1n

· · · · · · · · · · · ·
xn1 xn2 · · · xnn



























• We want to compute Z = X · Y

– zij =
∑n

k=1 Xik · Ykj

• Naive method uses ⇒ n2 · n = Θ(n3) operations

• Divide-and-conquer solution:

Z =

{

A B
C D

}

·
{

E F
G H

}

=

{

(A · E + B · G) (A · F + B · H)
(C · E + D · G) (C · F + D · H)

}

– The above naturally leads to divide-and-conquer solution:

∗ Divide X and Y into 8 sub-matrices A, B, C, and D.

∗ Do 8 matrix multiplications recursively.

∗ Compute Z by combining results (doing 4 matrix additions).

– Lets assume n = 2c for some constant c and let A, B, C and D be n/2 × n/2 matrices

∗ Running time of algorithm is T (n) = 8T (n/2) + Θ(n2) ⇒ T (n) = Θ(n3)

– But we already discussed a (simpler/naive) O(n3) algorithm! Can we do better?

3.1 Strassen’s Algorithm

• Strassen observed the following:

Z =

{

A B
C D

}

·
{

E F
G H

}

=

{

(S1 + S2 − S4 + S6) (S4 + S5)
(S6 + S7) (S2 + S3 + S5 − S7)

}

where

S1 = (B − D) · (G + H)

S2 = (A + D) · (E + H)

S3 = (A − C) · (E + F)

S4 = (A + B) · H
S5 = A · (F − H)

S6 = D · (G − E)

S7 = (C + D) · E

5

– Lets test that S6 + S7 is really C · E + D · G

S6 + S7 = D · (G − E) + (C + D) · E
= DG − DE + CE + DE

= DG + CE

• This leads to a divide-and-conquer algorithm with running time T (n) = 7T (n/2) + Θ(n2)

– We only need to perform 7 multiplications recursively.

– Division/Combination can still be performed in Θ(n2) time.

• Lets solve the recurrence using the iteration method

T (n) = 7T (n/2) + n2

= n2 + 7(7T (
n

22
) + (

n

2
)2)

= n2 + (
7

22
)n2 + 72T (

n

22
)

= n2 + (
7

22
)n2 + 72(7T (

n

23
) + (

n

22
)2)

= n2 + (
7

22
)n2 + (

7

22
)2 · n2 + 73T (

n

23
)

= n2 + (
7

22
)n2 + (

7

22
)2n2 + (

7

22
)3n2.... + (

7

22
)log n−1n2 + 7log n

=
log n−1

∑

i=0

(
7

22
)in2 + 7log n

= n2 · Θ((
7

22
)log n−1) + 7log n

= n2 · Θ(
7log n

(22)log n
) + 7log n

= n2 · Θ(
7log n

n2
) + 7log n

= Θ(7log n)

– Now we have the following:

7log n = 7
log7 n

log7 2

= (7log7 n)(1/ log7 2)

= n(1/ log7 2)

= n
log2 7

log2 2

= nlog 7

– Or in general: alogk n = nlogk a

6

So the solution is T (n) = Θ(nlog 7) = Θ(n2.81...)

• Note:

– We are ’hiding’ a much bigger constant in Θ() than before.

– Currently best known bound is O(n2.376..) (another method).

– Lower bound is (trivially) Ω(n2).

4 Master Method

• We have solved several recurrences using substitution and iteration.

• we solved several recurrences of the form T (n) = aT (n/b) + nc (T (1) = 1).

– Strassen’s algorithm ⇒ T (n) = 7T (n/2) + n2 (a = 7, b = 2, and c = 2)

– Merge-sort ⇒ T (n) = 2T (n/2) + n (a = 2, b = 2, and c = 1).

• It would be nice to have a general solution to the recurrence T (n) = aT (n/b) + nc.

• We do!

T (n) = aT
(

n
b

)

+ nc a ≥ 1, b ≥ 1, c > 0
⇓

T (n) =











Θ(nlogb a) a > bc

Θ(nc logb n) a = bc

Θ(nc) a < bc

Proof (Iteration method)

T (n) = aT
(n

b

)

+ nc

= nc + a
(

(n
b

)c
+ aT

(

n
b2

))

= nc +
(

a
bc

)

nc + a2T
(

n
b2

)

= nc +
(a

bc

)

nc + a2
((

n
b2

)c
+ aT

(

n
b3

))

= nc +
(a

bc

)

nc +
(a

bc

)2
nc + a3T

(

n
b3

)

= ...

= nc +
(a

bc

)

nc +
(a

bc

)2
nc +

(a
bc

)3
nc +

(a
bc

)4
nc + ... +

(a
bc

)logb n−1
nc + alogb nT (1)

= nc ∑logb n−1
k=0

(

a
bc

)k
+ alogb n

= nc ∑logb n−1
k=0

(a
bc

)k
+ nlogb a

Recall geometric sum
∑n

k=0 xk = xn+1
−1

x−1 = Θ(xn)

7

• a < bc

a < bc ⇔ a
bc < 1 ⇒ ∑log

b
n−1

k=0

(a
bc

)k ≤ ∑+∞

k=0

(a
bc

)k
= 1

1−(a

bc)
= Θ(1)

a < bc ⇔ logb a < logb bc = c

T (n) = nc ∑logb n−1
k=0

(a
bc

)k
+ nlogb a

= nc · Θ(1) + nlogb a

= Θ(nc)

• a = bc

a = bc ⇔ a
bc = 1 ⇒ ∑logb n−1

k=0

(

a
bc

)k
=

∑logb n−1
k=0 1 = Θ(logb n)

a = bc ⇔ logb a = logb bc = c

T (n) =
∑logb n−1

k=0

(a
bc

)k
+ nlogb a

= ncΘ(logb n) + nlogb a

= Θ(nc logb n)

• a > bc

a > bc ⇔ a
bc > 1 ⇒ ∑logb n−1

k=0

(a
bc

)k
= Θ

(

(a
bc

)logb n
)

= Θ
(

alogb n

(bc)logb
n

)

= Θ
(

alogb n

nc

)

T (n) = nc · Θ
(

alogb n

nc

)

+ nlogb a

= Θ(nlogb a) + nlogb a

= Θ(nlogb a)

• Note: Book states and proves the result slightly differently (don’t read it).

5 Changing variables

Sometimes reucurrences can be reduced to simpler ones by changing variables

• Example: Solve T (n) = 2T (
√

n) + log n

Let m = log n ⇒ 2m = n ⇒ √
n = 2m/2

T (n) = 2T (
√

n) + log n ⇒ T (2m) = 2T (2m/2) + m

Let S(m) = T (2m)

T (2m) = 2T (2m/2) + m ⇒ S(m) = 2S(m/2) + m
⇒ S(m) = O(m log m)
⇒ T (n) = T (2m) = S(m) = O(m log m) = O(log n log log n)

8

6 Other recurrences

Some important/typical bounds on recurrences not covered by master method:

• Logarithmic: Θ(log n)

– Recurrence: T (n) = 1 + T (n/2)

– Typical example: Recurse on half the input (and throw half away)

– Variations: T (n) = 1 + T (99n/100)

• Linear: Θ(N)

– Recurrence: T (n) = 1 + T (n − 1)

– Typical example: Single loop

– Variations: T (n) = 1 + 2T (n/2), T (n) = n + T (n/2), T (n) = T (n/5) + T (7n/10 + 6) + n

• Quadratic: Θ(n2)

– Recurrence: T (n) = n + T (n − 1)

– Typical example: Nested loops

• Exponential: Θ(2n)

– Recurrence: T (n) = 2T (n − 1)

9

