
Heaps. Heapsort.
(CLRS 6)

1 Introduction

• We have discussed several fundamental algorithms (e.g. sorting)

• We will now turn to data structures; Play an important role in algorithms design.

– Today we discuss priority queues and next time structures for maintaining ordered sets.

2 Priority Queue

• A priority queue supports the following operations on a set S of n elements:

– Insert: Insert a new element e in S

– FindMin: Return the minimal element in S

– DeleteMin: Delete the minimal element in S

• Sometimes we are also interested in supporting the following operations:

– Change: Change the key (priority) of an element in S

– Delete: Delete an element from S

• We can obviously sort using a priority queue:

– Insert all elements using Insert

– Delete all elements in order using FindMin and DeleteMin

• Priority queues have many applications, e.g. in discrete event simulation, graph algorithms

2.1 Array or List implementations

• The first implementation that comes to mind is ordered array:

1 3 5 6 7 8 9 11 12 15 17

– FindMin can be performed in O(1) time

– DeleteMin and Insert takes O(n) time since we need to expand/compress the array
after inserting or deleting element.

1

• If the array is unordered all operations take O(n) time.

• We could use double linked sorted list instead of array to avoid the O(n) expansion/compression
cost

– but Insert can still take O(n) time.

2.2 Heap implementation

• One way of implementing a priority queue is using a heap

• Heap definition:

– Perfectly balanced binary tree

∗ lowest level can be incomplete (but filled from left-to-right)

– For all nodes v we have key(v)≥key(parent(v))

• Example:

2

5 3

9 19 11 4

15 14

• Heap can be implemented (stored) in two ways (at least)

– Using pointers

– In an array level-by-level, left-to-right

Example:

2 5 3 9 19 11 4 15 14

∗ the left and right children of node in entry i are in entry 2i and 2i + 1, respectively

∗ the parent of node in entry i is in entry b i
2c

• Properties of heap:

– Height Θ(log n)

– Minimum of S is stored in root

2

• Operations:

– Insert

∗ Insert element in new leaf in leftmost possible position on lowest level

∗ Repeatedly swap element with element in parent node until heap order is reestab-
lished (up-heapify)
Example: Insertion of 4

191415

41159

34

22

5 3

9 19 11 4

15 14 4

– FindMin

∗ Return root element

– DeleteMin

∗ Delete element in root

∗ Move element from rightmost leaf on lowest level to the root (and delete leaf)

∗ Repeatedly swap element with the smaller of the children elements until heap order
is reestablished (down-heapify)

Example:
19

4 3

9 5 11 4

15 14

3

4 4

9 5 11 19

15 14

– Change and Delete can be handled similarly in O(log n) time

∗ Note: Assuming that we know the element to be changed/deleted (we cannot search
in a heap!!)

• Correctness: Exercise.

• Running time: All operations traverse at most one root-leaf path ⇒ O(log n) time.

• Sorting using heap (HeapSort) takes Θ(n log n) time.

– n · O(log n) time to insert all elements (build the heap)

– n · O(log n) time to output sorted elements

• Sometimes we would like to build a heap faster than O(n log n)

– BUILDHEAP

∗ Insert elements in any order in perfectly balanced tree

3

∗ down-heapify all nodes level-by-level, bottom-up

– Correctness:

∗ Induction on height of tree: When doing level i, all trees rooted at level i − 1 are
heaps.

– Analysis:

∗ The leaves are at height 0, the root is at height log n

∗ n elements ⇒≤ dn
2 e leaves ⇒ d n

2h e elements at height h

∗ Cost of down-heapify on a node at height h is h

∗ Total cost:
∑log n

i=1 h · d n
2h e = Θ(n) ·

∑log n
i=1

h
2h

∗ It can be shown that
∑log n

i=1
h
2h = O(1) =⇒ the total buildheap cost is Θ(n)

∗ Computing
∑n

i=1
h
2h and

∑
∞

i=1
h
2h

· Differentiate
∑n

h=0 xh = 1−xn+1

1−x , respectively
∑

∞

h=0 xh = 1
1−x (assuming |x| < 1)

·
∑

∞

h=0 hxh−1 = 1
(x−1)2 ⇒

∑n
h=0 hxh = x

(x−1)2 ⇒
∑n

h=0
h
2h = 1/2

(1/2−1)2 = O(1)

4

