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S.1 Introduction

This paper contains supplemental material to Hnatkovska et al. (2011), HMT hereafter.

In Section S.2, we discuss the asymptotic properties of the CMD estimators defined in

Section 2 of HMT. In Section S.3, we consider model comparison tests of Sections 3 and 4

in HMT when the weight matrices used to construct the CMD criterion function are data-

dependent. Section S.4 considers the model comparison testing when models are estimated

and evaluated on different sets of the reduced-form parameters. In Section S.5, we discuss

how to construct a confidence set for the weighting schemes favorable to one of the models.

This procedure allows one to compare two models by taking into account their relative

performance under various weighting schemes. Section S.6 contains the proofs of the results

in HMT. Section S.7 contains the proofs of the additional results presented in Sections

S.2-S.4.

Here, we would like also to make some additional remarks regarding the testing problem

discussed in HMT. In our paper, we follow the approach originally developed in Vuong

(1989). We believe that Vuong (1989) and similar testing problems should be discerned

from the classical non-nested hypothesis testing problems (Davidson and MacKinnon, 1981;

Smith, 1992). Suppose that two alternative models are non-nested and therefore cannot be

both true at the same time. According to our model comparison null hypothesis, the

models have equal measures of fit and, consequently, the null hypothesis implies that they

are both misspecified. However, in the literature on non-nested hypothesis testing, the null
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hypothesis is that one of the models is true. Thus, the two approaches, the non-nested

testing and the model comparison testing of misspecified models in the spirit of Vuong

(1989), are not competing but rather complementary. The first approach can be used

in a search for the true specification, while the later approach can be adopted when the

econometrician believes that all alternative models are misspecified or when they all have

been rejected by the overidentified restrictions or non-nested tests.

Lastly, we would like to make some comments regarding computation of the AQLRn

statistic in Section 4 in HMT. In general, its computation can be quite complicated due to

the need to integrate over A according to the distribution π. This task can be simplified in

the following manner. When the CDF corresponding to π is available in the closed-form,

one can draw at random from A according to the distribution π using a random num-

bers generator for uniform(0,1) distribution. Let Aj be such random draw, j = 1, . . . , τn,

where the number of draws τn can depend on the sample size n. For each Aj compute

QLRn

(
θ̂n (Aj) , γ̂n (Aj) , Aj

)
, and then compute

AQLRan = τ−1
n

τn∑
j=1

QLRn

(
θ̂n (Aj) , γ̂n (Aj) , Aj

)
.

As τn → ∞, AQLRan → AQLRn in probability. In practice one should choose τn so that

n/τn is close to zero, so that the effect of approximating the integral by random draws on

the test would be negligible.

S.2 Asymptotic properties of the CMD estimators of struc-

tural parameters

The CMD estimator of the structural parameters are defined by (2.1) in HMT. In this

section, we discuss the asymptotic properties of the CMD estimators under misspecification.

Theorem S.1 Suppose that Assumptions 2.1, 2.2, 2.4, and 2.5 in HMT hold. Then, θ̂n →p

θ0 and γ̂n →p γ0.

Consider the correctly specified case: h0−f (θ0) = 0. In this case, Assumptions 2.1, 2.2,

2.4, 2.5, and Theorem S.1 imply that n1/2
(
θ̂n − θ0

)
has asymptotically normal distribution

with the variance matrix(
∂f (θ0)′

∂θ
A′A

∂f (θ0)

∂θ′

)−1
∂f (θ0)′

∂θ
A′AΛ0A

′A
∂f (θ0)

∂θ′

(
∂f (θ0)′

∂θ
A′A

∂f (θ0)

∂θ′

)−1

.
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As usual, in the correctly specified case, the efficient CMD estimator corresponds to A′nAn =

Λ̂−1
n . Note, however, that when a model is misspecified, such a choice no longer leads to

statistical efficiency.

Define

Vff,0 = F−1
0

∂f (θ0)′

∂θ
A′AΛ0A

′A
∂f (θ0)

∂θ′
F ′−1

0 ,

Vfg,0 = F−1
0

∂f (θ0)′

∂θ
A′AΛ0A

′A
∂g (γ0)

∂γ′
G′−1

0 ,

Vgg,0 = G−1
0

∂g (γ0)′

∂γ
A′AΛ0A

′A
∂g (γ0)

∂γ′
G′−1

0 , and

V0 =

(
Vff,0 Vfg,0

V ′fg,0 Vgg,0

)
, (S.1)

where the matrices F0 and G0 are defined in Assumption 2.5 in HMT. Note that the matrix

V0 can be singular. The following theorem describes the asymptotic distribution of the

CMD estimators in the fixed weight matrix case.

Theorem S.2 Suppose that An = A for all n ≥ 1. Under Assumptions 2.1, 2.2, 2.4, and

2.5 in HMT,

n1/2

(
θ̂n − θ0

γ̂n − γ0

)
→d N

(
0(k+l)×1, V0

)
.

Next, we consider the case of data-dependent weight matrices An. For example, sup-

pose that A′nAn →p Λ−1. While such a choice no longer optimal when the models are

misspecified, the econometrician is still might be interested in using such An, because it

assigns greater weights to the elements of h that are estimated more precisely. When the

weight matrix depends on the data, we replace Assumption 2.1 with Assumption S.1 below,

which assumes that the elements of A′nAn are root-n consistent and asymptotically normal

estimators of the elements of A′A and can be correlated with ĥn. To account for the fact

that the matrix A′A contains duplicating elements, we introduce the following notation.

Let ξ be the d-vector of the unique elements of A′A, and CA be the m2×d selection matrix

of zeros and ones such that vec (A′A) = CAξ. Note that CA is a known matrix. Also note

that this representation allows for some known elements of A′A to be zeros. Let ξ̂n be an

estimator of ξ. We can write vec (A′nAn) = CAξ̂n.

Assumption S.1 (a) n1/2

((
ĥn − h0

)′
,
(
ξ̂n − ξ

))′
→d N (0,Σ0), where Σ0 is a positive

definite (m+ d)× (m+ d) matrix.

3



(b) A has full rank, and vec (A′A) = CAξ, where CA is known.

(c) There is Σ̂0 such that Σ̂0 →p Σ0.

This assumption is similar to condition (12) of Theorem 2 in Hall and Inoue (2003), HI

hereafter. Let V A
ff,0, V A

gg,0, and V A
fg,0 denote the asymptotic variance of θ̂n, the asymptotic

variance of γ̂n, and the asymptotic covariance of θ̂n and γ̂n respectively:

V A
ff,0 = F−1

0

∂f (θ0)′

∂θ
DA
f,0Σ0D

A′
f,0

∂f (θ0)

∂θ′
F ′−1

0 , where

DA
f,0 =

(
A′A

(
Im ⊗ (h0 − f (θ0))′

)
CA

)
, (S.2)

V A
gg,0 = G−1

0

∂g (γ0)′

∂γ
DA
g,0Σ0D

A′
g,0

∂g (γ0)

∂γ′
G′−1

0 , where

DA
g,0 =

(
A′A

(
Im ⊗ (h0 − g (γ0))′

)
CA

)
;

V A
fg,0 = F−1

0

∂f (θ0)′

∂θ
DA
f,0Σ0D

A′
g,0

∂g (γ0)

∂γ′
G′−1

0 , and

V A
0 =

(
V A
ff,0 V A

fg,0

V A′
fg,0 V A

gg,0

)
.

The joint asymptotic distribution of θ̂n and γ̂n is given in the next theorem.

Theorem S.3 Under Assumptions 2.4, 2.5 in HMT and S.1,

n1/2

(
θ̂n − θ0

γ̂n − γ0

)
→d N

(
0(k+l)×1, V

A
0

)
.

The asymptotic variance of θ̂n and γ̂n can be consistently estimated by the plug-in

method, i.e. by replacing h0 − f (θ0) with ĥn − f
(
θ̂n

)
and so on.

As discussed in HI, Assumption S.1(a) rules out HAC-type estimators of A′A. To

handle HAC-type estimators, one can impose a condition similar to Assumption 7 in HI.

According to this assumption, A′nAn is a consistent and asymptotically normal centered

HAC estimator, however, its convergence rate is slower than n−1/2. In this case, one can

show that the CMD estimators are consistent and asymptotically normal with a slower

than n−1/2 convergence rate. The asymptotic distribution will be driven in this case only

by estimation of A′A, as can be easily seen from the expansion in (2.8). Such an approach

can also be used to extend the tests discussed in the next section to allow for HAC-type

estimators A′nAn.
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S.3 Model comparison with data-dependent weight matrices

In this section, we extend the tests in Sections 3 and 4 of HMT to the case when the

weight matrices are data-dependent as described in Assumption S.1. The following result

establishes the null asymptotic distribution of the QLR statistic in Section 3.1 of HMT for

the nested models case.

Theorem S.4 Suppose that Assumptions 2.3-2.5 in HMT and S.1 hold, and G ⊂ F . Then,

under H0,

nQLRn

(
θ̂n, γ̂n

)
→d Z

′Σ
1/2
0

(
WA
g,0 −WA

f,0

)
Σ

1/2
0 Z,

where

Z ∼ N (0, Im+d) ,

WA
f,0 = WA

f,0(1)−WA
f,0(2)−WA

f,0 (3)−WA
f,0 (4) ,

WA
f,0(1) = DA′

f,0

∂f (θ0)

∂θ′
F ′−1

0

∂f (θ0)

∂θ

′
A′A

∂f (θ0)

∂θ′
F−1

0

∂f (θ0)′

∂θ
DA
f,0,

WA
f,0(2) =

(
A′A 0

)′ ∂f (θ0)

∂θ′
F−1

0

∂f (θ0)′

∂θ
DA
f,0

+DA′
f,0

∂f (θ0)

∂θ′
F ′−1

0

∂f (θ0)′

∂θ

(
A′A 0

)
,

WA
f,0 (3) = DA′

f,0

∂f (θ0)

∂θ′
F ′−1

0

(
M ′f,0 +Mf,0

)
F−1

0

∂f (θ0)′

∂θ
DA
f,0,

WA
f,0 (4) =

(
0
(
Im ⊗ (h0 − f (θ0))′

)
CA

)′ ∂f (θ0)

∂θ′
F−1

0

∂f (θ0)′

∂θ
DA
f,0

+DA′
f,0

∂f (θ0)

∂θ′
F ′−1

0

∂f (θ0)

∂θ

′ (
0
(
Im ⊗ (h0 − f (θ0))′

)
CA

)
.

Here DA
f,0 is defined in (S.2) and WA

g,0 is defined similarly to WA
f,0.

As in the fixed A case, the null asymptotic distribution is mixed χ2. The mixing matrices

WA
f,0 and WA

g,0 depend on unknown parameters, however, they can be consistently estimated

by the plug-in method, and the critical values can be obtained by simulations as described

in Section 3.1 of HMT.

The following result provides the null asymptotic distribution of the QLR statistic in

Section 3.2 in the case of non-nested models.

Theorem S.5 Suppose that Assumptions 2.3-2.5 in HMT and S.1 hold, and F ∩ G = ∅.
Then, under H0, n1/2QLRn

(
θ̂n, γ̂n

)
→d N

(
0, ω2

A,0

)
, where ωA,0 is given by

∥∥∥∥∥Σ
1/2
0

(
2A′A (f (θ0)− g (γ0))

CA [(Im ⊗ (h0 − g (γ0))) (h0 − g (γ0))− (Im ⊗ (h0 − f (θ0))) (h0 − f (θ0))]

)∥∥∥∥∥ .
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Again, as in the case of fixed weight matrices, ωA,0 is strictly positive unless models are

nested (f (θ0) = g (γ0)), and the asymptotic variance ω2
A,0 can be consistently estimated by

the plug-in method.

The averaged and sup-norm tests in Section 4 of HMT are derived under the assumption

that the weight matrices A in A are known. This rules out many important cases where at

least some A’s in A are unknown but can be consistently estimated. Below we show how

the results in Section 4 of HMT can be extended to allow for such weight matrices.

As for the previous results in this section, we replace Assumption 2.1 of HMT with

Assumption S.1. The vector ξ now contains the unknown unique elements of A’s in A The

selection matrix CA in part (b) of the assumption will be different for each A in A. If some

A consists only of known elements, its corresponding CA is a matrix of zeros. Let

W0(A) = WA
g,0 −WA

f,0,

where WA
g,0 and WA

f,0 are defined in Theorem S.4. When f and g are nested, we have the

following result.

Theorem S.6 Suppose that Assumptions 2.3, 4.1 in HMT and S.1 hold, and G ⊂ F . Let

Z ∼ N (0, Im+d). (a) Under Ha
0 , nAQLRn →d Z

′Σ
1/2
0 (

∫
W0(A)π(dA))Σ

1/2
0 Z. (b) Under

Hs
0 , nSQLRn →d supA∈A(Z ′Σ

1/2
0 W0(A)Σ

1/2
0 Z).

For the non-nested case, define s(A) as(
2A′A (f (θ0(A))− g (γ0(A)))

CA [(Im ⊗ (h0 − g (γ0(A)))) (h0 − g (γ0(A)))− (Im ⊗ (h0 − f (θ0(A)))) (h0 − f (θ0(A)))]

)
.

We have the following result.

Theorem S.7 Suppose that Assumptions 2.3, 4.1 in HMT and S.1 hold, and F ∩ G =

∅. Let {X (A) ∈ R : A ∈ A} be a mean zero Gaussian process such that the covariance

of X (A1) and X (A2), A1, A2 ∈ A, is s(A1)′Σ0s(A2). (a) Under Ha
0 , n1/2AQLRn →d

N(0,
∫
A
∫
A s(A1)′Σ0s(A2)π(dA1)π(dA2)). (b) Under Hs

0 , limn→∞ P (n1/2SQLRn > c) ≤
P (supA∈AX(A) > c).

S.4 Model comparison with estimation and evaluation on dif-

ferent sets of reduced-form parameters

In the calibration literature, model parameters are often estimated or calibrated using

one set of reduced-form characteristics, while model evaluation is conducted on another.
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For example, a structural model can be estimated to match first moments, and evaluated

with respect to second moments. This case is discussed in this section. It is analogous to

out-of-sample model evaluation in the forecasting literature1. It also corresponds to the

case of model comparison without lack-of-fit minimization in RV.

We find that when a model is estimated and evaluated on different sets of reduced-form

parameters, the QLR statistic has asymptotically normal distribution regardless of whether

f and g are nested or non-nested. The reason is that even when models are nested a bigger

model does not necessarily provides a better fit, since the deep parameters are not calibrated

to minimize the distance between the truth and the part of the model used for evaluation.

This conclusion is in agreement with the results in Section 6 of RV.

Next, we introduce the notation and assumptions of this section. We partition h0 =(
h′1,0, h

′
2,0

)′
, where h1,0 is anm1-vector, and h2,0 is anm2-vector, m1+m2 = m. Similarly, we

partition ĥn =
(
ĥ′1,n, ĥ

′
2,n

)′
, f (θ) =

(
f1 (θ)′ , f2 (θ)′

)′
, and g (γ) =

(
g1 (γ)′ , g2 (γ)

)′
. Next,

consider the weight matrices A1 and A2, where Ai is mi ×mi, i = 1, 2. At the estimation

stage, the parameters are calibrated using only the first m1 reduced-form characteristics

and the weight matrix A1:

θ̂n (A1,n) = arg min
θ∈Θ

∥∥∥A1,n

(
ĥ1,n − f1 (θ)

)∥∥∥2
, and

γ̂n (A1,n) = arg min
γ∈Γ

∥∥∥A1,n

(
ĥ1,n − g1 (γ)

)∥∥∥2
.

At the evaluation stage, models are compared using the remaining m2 reduced-form char-

acteristics and the weight matrix A2:

H0 : ‖A2 (h2,0 − f2 (θ0 (A1)))‖ = ‖A2 (h2,0 − g2 (γ0 (A1)))‖ . (S.3)

Hf : ‖A2 (h2,0 − f2 (θ0 (A1)))‖ < ‖A2 (h2,0 − g2 (γ0 (A1)))‖ . (S.4)

Hg : ‖A2 (h2,0 − f2 (θ0 (A1)))‖ > ‖A2 (h2,0 − g2 (γ0 (A1)))‖ . (S.5)

We make the following assumption.

Assumption S.2 (a) f2 and g2 are misspecified according to Definition 2.1.

(b) A1,n →p A1, A2,n →p A2; A1 and A2 have full ranks.

(c) Assumption 2.4 holds for A1, f1, and g1.

(d) ∂f2(θ0(A1))′

∂θ A′2A2 (h2,0 − f2 (θ0 (A1))) 6= 0; ∂g2(γ0(A1))′

∂γ A′2A2 (h2,0 − g2 (γ0 (A1))) 6= 0.

1See, for example, West and McCracken (1998).
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According to part (a) of the assumption, models are misspecified with respect to the sec-

ond set of reduced-form parameters h2. Note that the pseudo-true values of the parameters

are defined with respect to A1 and the first m1 reduced-form characteristics. Consequently,

the first-order condition (2.2) does not hold for f2, g2, h2, and A2, since θ0 (A1) and γ0 (A1)

are not the minimizers of the CMD criterion for the remaining m2 reduced-form character-

istics, as described in part (d).

The QLR statistic is now defined as

QLRn

(
θ̂n (A1,n) , γ̂n (A1,n) , A2,n

)
= −

∥∥∥A2,n

(
ĥ2,n − f2

(
θ̂n (A1,n)

))∥∥∥2
+
∥∥∥A2,n

(
ĥ2,n − g2 (γ̂n (A1,n))

)∥∥∥2
. (S.6)

Define further

Jf,0 =
(
−∂f2(θ0(A1))

∂θ′ F−1
1,0

∂f1(θ0(A1))′

∂θ A′1A1 Im2

)
,

Jg,0 =
(
−∂g2(γ0(A1))

γ′ G−1
1,0

∂g1(γ0(A1))′

∂γ A′1A1 Im2

)
,

where F1,0 and G1,0 are defined similarly to F0 and G0 in (2.6) and (2.7) respectively, but

using A1, h1,0, f1, and g1. In the case of fixed weight matrices, we have the following result.

Theorem S.8 Suppose that Assumptions 2.1 and S.2 hold, and A1,n = A1, A2,n = A2 for

all n.

(a) Under H0 in (S.3), n1/2QLRn

(
θ̂n (A1) , γ̂n (A1) , A2

)
→d N

(
0, ω2

21,0

)
, where

ω21,0 = 2
∥∥∥Λ

1/2
0

(
J ′g,0A

′
2A2 (h2,0 − g2 (γ0 (A1)))− J ′f,0A′2A2 (h2,0 − f2 (θ0 (A1)))

)∥∥∥ .
(b) Under Hf in (S.4), n1/2QLRn

(
θ̂n (A1) , γ̂n (A1) , A2

)
→∞ with probability one; under

the alternative Hg in (S.5), n1/2QLRn

(
θ̂n (A1) , γ̂n (A1) , A2

)
→ −∞ with probability

one.

As before the QLR statistic is asymptotically normal when models are non-nested. Now,

however, it is asymptotically normal also in the nested case. This is because there is no

minimization of the lack-of-fit functions in (S.6). Thus, when models are estimated using one

set of reduced-form parameters and evaluated using another, one follows the rule regardless

of whether models are nested, non-nested, or overlapping. One should reject the null of

equivalent models when

n1/2
∣∣∣QLRn (θ̂n (A1) , γ̂n (A1) , A2

)∣∣∣ /ω̂21,n > z1−α/2,
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where ω̂21,n is a consistent estimator of ω21,0. A consistent estimator of ω21,0 can be obtained

by the plug-in method, since all the elements of ω21,0 can be consistently estimated. Note

that, when f2 (θ0 (A1)) = g2 (γ0 (A1)), which can occur if models are nested or overlapping,

the columns corresponding to Im2 in Jf,0 and Jg,0 do not contribute to the asymptotic

variance; however, this will be reflected automatically by any consistent estimator ω̂21,n.

When the weight matrices are data dependent, one can adjust the asymptotic variance

of the QLR statistic in a manner similar to that in Theorem S.5.

S.5 Confidence sets for weighting schemes favorable to one

of the models

In Section 4 of HMT, we discuss averaged and sup-norm tests that take into account mod-

els’ relative performance under various choices of the weighting schemes. In this section

we discuss another such approach. When all the considered models are misspecified, it is

possible that model g provides a better approximation to one set of reduced-form charac-

teristics, say h1, and model f performs better on another set of h. In such a case, it might

be of interest to see how large the weight of h1 has to be for model g to be preferred to f

overall. One can compare f and g by approximating the set of weighting schemes under

which model g is preferred to model f . If this set is large, one can argue that model g is a

viable alternative to f . On the other hand, if this set is very small in some sense, one can

argue that g can be as good as f only under very special circumstances.

Let A0 be a collection of weighting schemes under which g is preferred to f :

A0 = {A ∈ A : ‖A (h0 − g (γ0 (A)))‖ − ‖A (h0 − f (θ0 (A)))‖ ≤ 0} .

The confidence set (CS) for A0, denoted by CSn,1−α, is defined by the following condition

lim
n→∞

P (A ∈ CSn,1−α) ≥ 1− α for all A ∈ A0.

The CS be constructed by inversion of the basic QLR test discussed in Section 3. First,

given A ∈ A, compute QLRn (A). Next, test H0 : A ∈ A0 as follows: reject H0 when

QLRn (A) > z1−αω̂n/
√
n, if models are non-nested. If models are nested, assuming that

G ⊂ F , one can use the mixed χ2 critical values as described in Section 3.1 to test H0.

If models are overlapping, one can apply the sequential procedure of Section 3.3. The

confidence set CSn,1−α is given by the collection of all A for which H0 : A ∈ A0 cannot be

rejected.
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S.6 Proofs of the results in HMT

Proof of (2.8). First, note that by Theorem S.1, θ̂n →p θ0. Next, applying the mean

value expansion to f
(
θ̂n

)
,

0 =
∂f
(
θ̂n

)
∂θ

′

A′nAn

(
ĥn − f

(
θ̂n

))
=
∂f
(
θ̂n

)
∂θ

′

A′nAn

ĥn − f (θ0)−
∂f
(
θ̃n

)
∂θ′

(
θ̂n − θ0

)
=
∂f
(
θ̂n

)
∂θ

′ (
A′nAn

(
ĥn − h0

)
+
(
A′nAn −A′A

)
(h0 − f (θ0))

)
+
∂f
(
θ̂n

)
∂θ

′

A′A (h0 − f (θ0))−
∂f
(
θ̂n

)
∂θ

′

A′nAn
∂f
(
θ̃n

)
∂θ′

(
θ̂n − θ0

)
,

where θ̃n is the mean value. Next,

∂f
(
θ̂n

)
∂θ

′

A′A (h0 − f (θ0))

=
(
Ik ⊗ (h0 − f (θ0))′A′A

)
vec

∂f
(
θ̂n

)
∂θ′


=
∂f (θ0)

∂θ

′
A′A (h0 − f (θ0))

+
(
Ik ⊗ (h0 − f (θ0))′A′A

) ∂

∂θ′
vec

(
∂f
(
θn
)

∂θ′

)(
θ̂n − θ0

)
= Mf,n

(
θ̂n − θ0

)
, (S.7)

where

Mf,n =
(
Ik ⊗ (h0 − f (θ0))′A′A

) ∂

∂θ′
vec

(
∂f
(
θn
)

∂θ′

)
, (S.8)

and θn is the mean value. Note that the last equality in (S.7) follows from the population

first-order condition (2.2). Define

Fn =
∂f
(
θ̂n

)
∂θ

′

A′nAn
∂f
(
θ̃n

)
∂θ′

−Mf,n. (S.9)

The result follows since by Theorem S.1, Mf,n →p Mf,0 and Fn →p F0. �

10



Proof of Lemma 3.1. Let hf,0 = f (θ0) and hg,0 = g (γ0). Then under the null of

models equivalence we have ‖A (h0 − hf,0)‖ = ‖A (h0 − hg,0)‖. However, since models are

nested, hg,0 ∈ F , and there should be some θ̃0 ∈ Θ such that hg,0 = f
(
θ̃0

)
which violates

Assumption 2.4 if hf,0 6= hg,0. �

Proof of Theorem 3.1. In the case of the fixed weight matrix, using (2.8) the following

expansion is obtained.

n
∥∥∥A(ĥn − f (θ̂n))∥∥∥2

= n
∥∥∥A(ĥn − f (θ0)

)∥∥∥2
+ n1/2

(
ĥn − h0

)′
A′AWf,0A

′An1/2
(
ĥn − h0

)
+ op (1) . (S.10)

To show (S.10), write∥∥∥A(ĥn − f (θ̂n))∥∥∥2
=
∥∥∥A(ĥn − f (θ0)

)∥∥∥2
+ S1,n + S2,n + S3,n, (S.11)

where

S1,n =
(
f
(
θ̂n

)
− f (θ0)

)′
A′A

(
f
(
θ̂n

)
− f (θ0)

)
,

S2,n = −2
(
ĥn − h0

)′
A′A

(
f
(
θ̂n

)
− f (θ0)

)
,

S3,n = −2 (h0 − f (θ0))′A′A
(
f
(
θ̂n

)
− f (θ0)

)
.

Now, one obtains (S.10) by expanding f
(
θ̂n

)
in S1,n, S2,n, and S3,n around f (θ0) and using

(2.8). Let θ̃n denote the mean value. For S1,n and S2,n, we have

nS1,n = n1/2
(
θ̂n − θ0

)′ ∂f (θ̃n)′
∂θ

A′A
∂f
(
θ̃n

)
∂θ′

n1/2
(
θ̂n − θ0

)
=

(
n1/2

(
ĥn − h0

)′
A′A

∂f (θ0)

∂θ′
F−1

0

)
∂f (θ0)′

∂θ
A′A

∂f (θ0)

∂θ′
×

×
(
F−1

0

∂f (θ0)′

∂θ
A′An1/2

(
ĥn − h0

))
+ op (1)

= n1/2
(
ĥn − h0

)′
A′AWf,0 (1)A′An1/2

(
ĥn − h0

)
+ op (1) .

nS2,n = −2n1/2
(
ĥn − h0

)′
A′A

∂f
(
θ̃n

)
∂θ′

n1/2
(
θ̂n − θ0

)
= −2n1/2

(
ĥn − h0

)′
A′A

∂f (θ0)

∂θ′

(
F−1

0

∂f (θ0)′

∂θ
A′An1/2

(
ĥn − h0

))
+ op (1)

= −n1/2
(
ĥn − h0

)′
A′AWf,0 (2)A′An1/2

(
ĥn − h0

)
+ op (1) .
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In the case of S3,n, after expanding f
(
θ̂n

)
, one can apply the result in (S.7) to the term

(h0 − f (θ0))′A′A
(
∂f
(
θ̃n

)
/∂θ′

)
, which leads to Mf,0 in the expression for Wf,0(3):

nS3,n = −2

n1/2 (h0 − f (θ0))′A′A
∂f
(
θ̃n

)
∂θ′

n1/2
(
θ̂n − θ0

)
= −2n1/2

(
θ̂n − θ0

)′
Mf,nn

1/2
(
θ̂n − θ0

)
= −2

(
n1/2

(
ĥn − h0

)′
A′A

∂f (θ0)

∂θ′
F−1

0

)
Mf,0

(
F−1

0

∂f (θ0)′

∂θ
A′An1/2

(
ĥn − h0

))
+ op (1)

= −n1/2
(
ĥn − h0

)′
A′AWf,0 (3)A′An1/2

(
ĥn − h0

)
+ op (1) .

An expansion similar to (S.10) is available for n
∥∥∥A(ĥn − g (γ̂n)

)∥∥∥2
with f , θ, and F

replaced by g, γ, and G. Hence,

nQLRn

(
θ̂n, γ̂n

)
= −n

∥∥∥A(ĥn − f (θ0)
)∥∥∥2

+ n
∥∥∥A(ĥn − g (γ0)

)∥∥∥2

+ n1/2
(
ĥn − h0

)′
A′A (Wg,0 −Wf,0)A′An1/2

(
ĥn − h0

)
+ op (1) . (S.12)

Under the null, the first summand on the right-hand side of (S.12) is zero by Lemma 3.1,

and the result in part (a) of the theorem follows by Assumption 2.1(a).

Since under Hf , ‖A (h0 − f (θ0))‖2 ≤ ‖A (h0 − g (γ0))‖2, part (b) of the theorem follows

from (S.12). �

Proof of Theorem 3.2. From (S.10), by adding and subtracting h0, we obtain∥∥∥A(ĥn − f (θ̂n))∥∥∥2
= ‖A (h0 − f (θ0))‖2 + 2 (h0 − f (θ0))′A′A

(
ĥn − h0

)
+Op

(
n−1

)
,

with a similar expression for
∥∥∥A(ĥn − g (γ̂n)

)∥∥∥2
. Hence,

QLRn

(
θ̂n, γ̂n

)
= −‖A (h0 − f (θ0))‖2 + ‖A (h0 − g (γ0))‖2

+ 2 (f (θ0)− g (γ0))′A′A
(
ĥn − h0

)
+Op

(
n−1

)
. (S.13)

Since F ∩ G = ∅, we have that f (θ0) 6= g (γ0), and the result follows from Assumption

2.1(a). �

Proof of Theorem 4.1. First, note that in the case of nested models for all A ∈ A,

12



‖A (h0 − g (γ0 (A)))‖2 ≥ ‖A (h0 − f (θ0 (A)))‖2, and thus, under Ha
0 , we have that for all

A ∈ A, ‖A (h0 − g (γ0 (A)))‖2 = ‖A (h0 − f (θ0 (A)))‖2.

We show next that underHa
0 , nQLRn

(
θ̂n (A) , γ̂n (A) , A

)
converges weakly to a stochas-

tic process indexed by A. According to Theorem (10.2) of Pollard (1990), for weak con-

vergence one needs to show finite dimensional convergence and stochastic equicontinuity of

nQLRn

(
θ̂n (A) , γ̂n (A) , A

)
with respect to A. Finite dimensional convergence follows by

the same arguments as in the proof of Theorem 3.1.

For stochastic equicontinuity, similarly to (S.10) one can show that for all A ∈ A,∥∥∥A(ĥn − f (θ̂n))∥∥∥2

=
∥∥∥A(ĥn − f (θ0)

)∥∥∥2
+
(
ĥn − h0

)′
A′AWf,nA

′A
(
ĥn − h0

)
+ op

(
n−1

)
,

where

Wf,n = Wf,n(1)−Wf,n(2)−Wf,n(3),

Wf,n(1) =
∂f
(
θ̂n

)
∂θ′

F
′−1
n

∂f
(
θ̃n

)
∂θ

′

A′A
∂f
(
θ̃n

)
∂θ′

F−1
n

∂f
(
θ̂n

)′
∂θ

,

Wf,n(2) =
∂f
(
θ̂n

)
∂θ′

F
′−1
n

∂f
(
θ̃n

)
∂θ

′

+
∂f
(
θ̃n

)
∂θ′

F−1
n

∂f
(
θ̂n

)′
∂θ

,

Wf,n(3) =
∂f
(
θ̂n

)
∂θ′

F
′−1
n

(
M ′f,n +Mf,n

)
F−1
n

∂f
(
θ̂n

)′
∂θ

,

and Fn, Mf,n are as defined in (S.9) and (S.8) respectively. A similar expansion holds for∥∥∥A(ĥn − g (γ̂n)
)∥∥∥2

, and we can write

n
∣∣∣QLRn (θ̂n (A1) , γ̂n (A1) , A1

)
−QLRn

(
θ̂n (A2) , γ̂n (A2) , A2

)∣∣∣
≤ n

∥∥∥ĥn − h0

∥∥∥2
Kn ‖A1 −A2‖δ + op (1) , (S.14)

where δ > 0, Kn = Op (1) and independent of (A1 −A2). Since Wf,n and Wg,n, where

Wg,n is defined similarly to Wf,n, are continuous in A, the reminder term in (S.14) is

op (1) uniformly in A. Stochastic equicontinuity of nQLRn

(
θ̂n (A) , γ̂n (A) , A

)
follows from

Lemma 2(a) of Andrews (1992).

The results of the theorem follow now from weak convergence by the continuous mapping

theorem (CMT). �

Proof of Theorem 4.2. Convergence of finite dimensional distributions and stochastic

13



equicontinuity can be established from (S.13). The results of the theorem will follow by the

CMT. �

S.7 Proofs of the results in Sections S.2-S.4

Proof of Theorem S.1. For consistency of θ̂n, it is sufficient to show uniform conver-

gence of
∥∥∥An (ĥn − f (θ)

)∥∥∥2
to ‖A (h0 − f (θ))‖2 on Θ. The desired result will follow from

Assumptions 2.4 and 2.5 by the usual argument for extremum estimators (see, for example,

Theorem 2.1 in Newey and McFadden (1994)).∥∥∥An (ĥn − f (θ)
)∥∥∥2
− ‖A (h0 − f (θ))‖2 = R1,n − 2R2,n (θ) +R3,n (θ) , where

R1,n = ĥnA
′
nAnĥn − h′0A′nAnh0,

R2,n (θ) =
(
ĥn − h0

)′
A′nAnf (θ)

R3,n (θ) = (h0 − f (θ))′
(
A′nAn −A′A

)
(h0 − f (θ)) .

By Assumption 2.1(a) and 2.2, |R1,n| →p 0.. Due to Assumption 2.5 (a) and (c), f is

bounded on Θ (Davidson, 1994, Theorem 2.19), and therefore,

sup
θ∈Θ
|R2,n (θ)| ≤

∥∥A′nAn∥∥∥∥∥(ĥn − h0

)∥∥∥ sup
θ∈Θ
‖f (θ)‖

→p 0,

by Assumptions 2.1(a) and 2.2. Similarly,

sup
θ∈Θ
|R3,n (θ)| ≤

∥∥A′nAn −A′A∥∥ sup
θ∈Θ
‖h0 − f (θ)‖2

≤
∥∥A′nAn −A′A∥∥(‖h0‖+ sup

θ∈Θ
‖f (θ)‖

)2

→p 0.

The proof of γ̂n →p γ0 is identical with f and θ replaced by g and γ respectively. �

Proof of Theorem S.2. One can expand the first-order conditions for γ̂n similarly to that

of θ̂n, equation (2.8). Taking into account that An = A for all n,

n1/2

(
θ̂n − θ0

γ̂n − γ0

)
=

 F−1
n

∂f(θ̂n)
′

∂θ

G−1
n

∂g(γ̂n)′

∂γ

A′An1/2
(
ĥn − h0

)
,

14



where

Gn =
∂g (γ̂n)′

∂γ
A′nAn

∂g (γ̃n)

∂γ′
−Mg,n,

Mg,n =
(
Il ⊗ (h0 − g (γ0))′A′A

) ∂

∂γ′
vec

(
∂g (γn)

∂γ′

)
,

and γ̃n, γn are between γ̂n and γ0. The result follows from Theorem S.1, Assumptions 2.1(a)

and 2.5(e). �

Proof of Theorem S.3. The result follows immediately from (2.8), a similar expansion

for γ̂n, and the assumptions of the theorem by writing(
θ̂n − θ0

γ̂n − γ0

)
=

=

 F−1
n

∂f(θ̂n)
′

∂θ

(
A′nAn Im ⊗ (h0 − f (θ0))′

)
G−1
n

∂g(γ̂n)′

∂γ

(
A′nAn Im ⊗ (h0 − g (γ0))′

)
( ĥn − h0

vec (A′nAn −A′A)

)

=

 F−1
n

∂f(θ̂n)
′

∂θ

(
A′nAn

(
Im ⊗ (h0 − f (θ0))′

)
CA

)
G−1
n

∂g(γ̂n)′

∂γ

(
A′nAn

(
Im ⊗ (h0 − g (γ0))′

)
CA

)
( ĥn − h0

ξ̂n − ξ

)
.

�

Proof of Theorem S.4. As in the proof of Theorem 3.1, write∥∥∥An (ĥn − f (θ̂n))∥∥∥2
=
∥∥∥An (ĥn − f (θ0)

)∥∥∥2
+ SA1,n + SA2,n + SA3,n, (S.15)

where

SA1,n =
(
f
(
θ̂n

)
− f (θ0)

)′
A′nAn

(
f
(
θ̂n

)
− f (θ0)

)
,

SA2,n = −2
(
ĥn − h0

)′
A′nAn

(
f
(
θ̂n

)
− f (θ0)

)
,

SA3,n = −2 (h0 − f (θ0))′A′nAn

(
f
(
θ̂n

)
− f (θ0)

)
.

Under the null in the nested case, f (θ0) = g (θ0), and therefore
∥∥∥An (ĥn − f (θ0)

)∥∥∥2
=∥∥∥An (ĥn − g (γ0)

)∥∥∥2
. Define

DA
f,n =

(
A′nAn

(
Im ⊗ (h0 − f (θ0))′

)
CA

)
.
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By expanding f
(
θ̂n

)
around f (θ0) and using (2.8), we obtain the following expression for

SA1,n:

(
ĥn − h0

ξ̂n − ξ

)′
DA′
f,n

∂f
(
θ̂n

)
∂θ′

F ′−1
n

∂f
(
θ̃n

)′
∂θ

A′nAn

×
∂f
(
θ̃n

)
∂θ′

F−1
n

∂f
(
θ̂n

)′
∂θ

DA
f,n

(
ĥn − h0

ξ̂n − ξ

)
,

where θ̃n is the mean value. Similarly, for SA2,n we obtain

(
ĥn − h0

ξ̂n − ξ

)′(
A′nAn

0

)
∂f
(
θ̃n

)
∂θ′

F−1
n

∂f
(
θ̂n

)′
∂θ

DA
f,n×

×

(
ĥn − h0

ξ̂n − ξ

)

+

(
ĥn − h0

ξ̂n − ξ

)′
DA′
f,n

∂f
(
θ̂n

)
∂θ′

F ′−1
n

∂f
(
θ̃n

)′
∂θ

(
A′nAn

0

)′

×

(
ĥn − h0

ξ̂n − ξ

)
.

Next, for SA3,n write

− 2SA3,n = (h0 − f (θ0))′A′A
(
f
(
θ̂n

)
− f (θ0)

)
+

+ (h0 − f (θ0))′
(
A′nAn −A′A

) (
f
(
θ̂n

)
− f (θ0)

)
. (S.16)

For the first summand on the right-hand side of (S.16), applying the mean-value expansion

to f
(
θ̂n

)
around f (θ0) and by (S.7), we obtain

(h0 − f (θ0))′A′A
(
f
(
θ̂n

)
− f (θ0)

)
=

= (h0 − f (θ0))′A′A
∂f
(
θ̃n

)
∂θ′

(
θ̂n − θ0

)
=
(
θ̂n − θ0

)′
Mf,n

(
θ̂n − θ0

)
=

(
ĥn − h0

ξ̂n − ξ

)′
DA′
f,n

∂f
(
θ̂n

)
∂θ′

F ′−1
n Mf,n
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× F−1
n

∂f
(
θ̂n

)′
∂θ

DA
f,n

(
ĥn − h0

ξ̂n − ξ

)
.

For the second summand on the right-hand side of (S.16), write

(h0 − f (θ0))′
(
A′nAn −A′A

) (
f
(
θ̂n

)
− f (θ0)

)
=

=
(
ξ̂n − ξ

)′
C ′A (Im ⊗ (h0 − f (θ0)))

(
f
(
θ̂n

)
− f (θ0)

)
=

(
ĥn − h0

ξ̂n − ξ

)′(
0

C ′A (Im ⊗ (h0 − f (θ0)))

)
∂f
(
θ̃n

)
∂θ′

× F−1
n

∂f
(
θ̂n

)′
∂θ

DA
f,n

(
ĥn − h0

ξ̂n − ξ

)
.

The result of the theorem follows by Assumption S.1 from the above expressions for S1,n, S2,n, S3,n

and by establishing a similar expansion for
∥∥∥An (ĥn − g (γ̂n)

)∥∥∥2
. �

Proof of Theorem S.5. From (S.15) we have∥∥∥An (ĥn − f (θ̂n))∥∥∥2
− ‖A (h0 − f (θ0))‖2

= (h0 − f (θ0))′
(
A′nAn −A′A

)
(h0 − f (θ0)) + 2 (h0 − f (θ0))′A′nAn

(
ĥn − h0

)
+Op

(
n−1

)
=
(

2 (h0 − f (θ0))′A′nAn (h0 − f (θ0))′
(
Im ⊗ (h0 − f (θ0))′

) )
×

(
ĥn − h0

vec (A′nAn −A′A)

)
+Op

(
n−1

)
=
(

2 (h0 − f (θ0))′A′nAn (h0 − f (θ0))′
(
Im ⊗ (h0 − f (θ0))′

)
CA

)
×

(
ĥn − h0

ξ̂n − ξ

)
+Op

(
n−1

)
.

Using a similar expansion for
∥∥∥An (ĥn − g (γ̂n)

)∥∥∥2
, the result follows by Assumption S.1.

�

The proof of Theorem S.6 is similar to that of Theorems 4.1 and S.4, and therefore

omitted. The proof of Theorem S.7 is similar to that of Theorems 4.2 and S.5, and therefore

omitted.
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Proof of Theorem S.8. From (S.11),
∥∥∥A2

(
ĥ2,n − f2

(
θ̂n (A1)

))∥∥∥2
can be expanded as

‖A2 (h2,0 − f2 (θ0 (A1)))‖2 + 2 (h2,0 − f2 (θ0 (A1)))′A′2A2

(
ĥ2,n − h2,0

)
− 2 (h2,0 − f2 (θ0 (A1)))′A′2A2

∂f2 (θ0 (A1))

∂θ′

(
θ̂n (A1)− θ0 (A1)

)
+ op

(
n−1/2

)
= ‖A2 (h2,0 − f2 (θ0 (A1)))‖2

− 2 (h2,0 − f2 (θ0 (A1)))′A′2A2
∂f2 (θ0 (A1))

∂θ′
F−1

1,0

∂f1 (θ0 (A1))′

∂θ
A′1A1

(
ĥ1,n − h1,0

)
+ 2 (h2,0 − f2 (θ0 (A1)))′A′2A2

(
ĥ2,n − h2,0

)
+ op

(
n−1/2

)
= ‖A2 (h2,0 − f2 (θ0 (A1)))‖2 + 2 (h2,0 − f2 (θ0 (A1)))′A′2A2Jf,0

(
ĥn − h0

)
+ op

(
n−1/2

)
.

�
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